Найти значение логарифмического уравнения. Решение логарифмических уравнений


Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей "Открытый урок" 2004-2005 учебного года, я представила урок-лекцию по теме "Логарифмическая функция" (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме "Решение логарифмических уравнений", которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение равносильно системе

(2)

Для решения уравнения (1) достаточно решить уравнение

и его решения подставить в систему неравенств

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение

Решение:

Оба значения х удовлетворяют условиям системы.

Ответ:

Рассмотрим уравнения вида:

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

(6)

Корнями уравнения (5) будут только те корни уравнения , которые

принадлежат области определения, задаваемой условиями .

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Решим уравнение:

Всем условиям системы удовлетворяет лишь один корень. Ответ:

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .

Пример 3: Найти х , если

Решение:

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение

Оба значения х являются корнями уравнения.

Ответ:

4. ЛОГАРИФМИРОВАНИЕ.

Пример 5: Решить уравнение

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство "логарифм степени".

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение

Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:

Тогда данное уравнение примет вид:

Так как , то это корень уравнения.

Ответ: х = 16

6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ .

Рассмотрим некоторые типы логарифмических уравнений, которые не так часто рассматриваются на уроках математики в школе, но широко используются при составлении конкурсных заданий, в том числе и для ЕГЭ.

1. Уравнения, решаемые методом логарифмирования

При решении уравнений, содержащих переменную и в основании и в показателе степени, используют метод логарифмирования. Если, при этом, в показателе степени содержится логарифм, то обе части уравнения надо логарифмировать по основанию этого логарифма.

Пример 1.

Решить уравнение: х log 2 х+2 = 8.

Решение.

Прологарифмируем левую и правую части уравнения по основанию 2. Получим

log 2 (х log 2 х+2) = log 2 8,

(log 2 х + 2) · log 2 х = 3.

Пусть log 2 х = t.

Тогда (t + 2)t = 3.

t 2 + 2t – 3 = 0.

D = 16. t 1 = 1; t 2 = -3.

Значит log 2 х = 1 и х 1 = 2 или log 2 х = -3 и х 2 =1/8

Ответ: 1/8; 2.

2. Однородные логарифмические уравнения.

Пример 2.

Решить уравнение log 2 3 (х 2 – 3х + 4) – 3log 3 (х + 5) log 3 (х 2 – 3х + 4) – 2log 2 3 (х + 5) = 0

Решение.

Область определения уравнения

{х 2 – 3х + 4 > 0,
{х + 5 > 0. → х > -5.

log 3 (х + 5) = 0 при х = -4. Проверкой определяем, что данное значение х не является корнем первоначального уравнения. Следовательно можно разделить обе части уравнения на log 2 3 (х + 5).

Получим log 2 3 (х 2 – 3х + 4) / log 2 3 (х + 5) – 3 log 3 (х 2 – 3х + 4) / log 3 (х + 5) + 2 = 0.

Пусть log 3 (х 2 – 3х + 4) / log 3 (х + 5) = t. Тогда t 2 – 3 t + 2 = 0. Корни данного уравнения 1; 2. Возвратившись к первоначальной переменной, получим совокупность двух уравнений

Но с учётом существования логарифма нужно рассматривать лишь значения (0; 9]. Значит выражение в левой части принимает наибольшее значение 2 при х = 1. Рассмотрим теперь функцию у = 2 х-1 + 2 1-х. Если принять t = 2 x -1, то она примет вид у = t + 1/t, где t > 0. При таких условиях она имеет единственную критическую точку t = 1. Это точка минимума. У vin = 2. И достигается он при х = 1.

Теперь очевидно, что графики рассматриваемых функций могут пересекаться лишь один раз в точке (1; 2). Получается, что х = 1 единственный корень решаемого уравнения.

Ответ: х = 1.

Пример 5. Решить уравнение log 2 2 х + (х – 1) log 2 х = 6 – 2х

Решение.

Решим данное уравнение относительно log 2 х. Пусть log 2 х = t. Тогда t 2 + (х – 1) t – 6 + 2х = 0.

D = (х – 1) 2 – 4(2х – 6) = (х – 5) 2 . t 1 = -2; t 2 = 3 – х.

Получим уравнение log 2 х = -2 или log 2 х = 3 – х.

Корень первого уравнения х 1 = 1/4.

Корень уравнения log 2 х = 3 – х найдём подбором. Это число 2. Этот корень единственный, так как функция у = log 2 х возрастающая на всей области определения, а функция у = 3 – х – убывающая.

Проверкой легко убедится в том, что оба числа являются корнями уравнения

Ответ:1/4; 2.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Этим видео я начинаю длинную серию уроков про логарифмические уравнения. Сейчас перед вами сразу три примера, на основе которых мы будем учиться решать самые простые задачи, которые так и называются — простейшие .

log 0,5 (3x − 1) = −3

lg (x + 3) = 3 + 2 lg 5

Напомню, что простейшим логарифмическим уравнением называется следующее:

log a f (x ) = b

При этом важно, чтобы переменная х присутствует только внутри аргумента, т. е. только в функции f (x ). А числа а и b являются именно числами, а ни в коем случае не функциями, содержащими переменную х.

Основные методы решения

Существует множество способов решения таких конструкций. Например, большинство учителей в школе предлагают такой способ: Сразу выразить функцию f (x ) по формуле f (x ) = a b . Т. е. когда вы встречаете простейшую конструкцию, сразу без дополнительных действий и построений можете перейти к решению.

Да, безусловно, решение получится правильным. Однако проблема этой формулы состоит в том, что большинство учеников не понимают , откуда она берется и почему именно букву а мы возводим в букву b .

В результате я часто наблюдаю очень обидные ошибки, когда, например, эти буквы меняются местами. Данную формулу нужно либо понять, либо зубрить, причем второй способ приводит к ошибкам в самые неподходящие и самые ответственные моменты: на экзаменах, контрольных и т. д.

Именно поэтому всем своим ученикам я предлагаю отказаться от стандартной школьной формулы и использовать для решения логарифмических уравнений второй подход, который, как вы уже наверняка догадались из названия, называется канонической формой .

Идея канонической формы проста. Давайте еще раз посмотрим на нашу задачу: слева у нас есть log a , при этом под буквой a имеется в виду именно число, а ни в коем случае не функция, содержащая переменную х. Следовательно, на эту букву распространяются все ограничения, которые накладываются на основание логарифма. а именно:

1 ≠ a > 0

С другой стороны, из того же самого уравнения мы видим, что логарифм должен быть равен числу b , и вот на эту букву никаких ограничений не накладывается, потому что он может принимать любые значения — как положительные, так и отрицательные. Все зависит от того, какие значения принимает функция f (x ).

И вот тут мы вспоминаем наше замечательное правило, что любое число b может быть представлено в виде логарифма по основанию а от а в степени b :

b = log a a b

Как запомнить эту формулу? Да очень просто. Давайте запишем следующую конструкцию:

b = b · 1 = b · log a a

Разумеется, что при этом возникают все ограничения, которые мы записали вначале. А теперь давайте воспользуемся основным свойством логарифма, и внесем множитель b в качестве степени а. Получим:

b = b · 1 = b · log a a = log a a b

В результате исходное уравнение перепишется в следующем виде:

log a f (x ) = log a a b → f (x ) = a b

Вот и все. Новая функция уже не содержит логарифма и решается стандартными алгебраическими приемами.

Конечно, кто-то сейчас возразит: а зачем вообще было придумывать какую-то каноническую формулу, зачем выполнять два дополнительных ненужных шага, если можно было сразу перейти от исходной конструкции к итоговой формуле? Да уже хотя бы затем, что большинство учеников не понимают, откуда берется эта формула и, как следствие, регулярно допускают ошибки при ее применении.

А вот такая последовательность действий, состоящая из трех шагов, позволяет вам решить исходное логарифмическое уравнение, даже если вы не понимаете, откуда берется та самая итоговая формула. Кстати, канонической формулой называется именно эта запись:

log a f (x ) = log a a b

Удобство канонической формы состоит еще и в том, что ее можно применять для решения очень широкого класса логарифмических уравнений, а не только простейших, которые мы рассматриваем сегодня.

Примеры решения

А теперь давайте рассмотрим реальные примеры. Итак, решаем:

log 0,5 (3x − 1) = −3

Давайте перепишем его следующим образом:

log 0,5 (3x − 1) = log 0,5 0,5 −3

Многие ученики торопятся и пытаются сразу возвести число 0,5 в степень, которая пришла к нам из исходной задачи. И действительно, когда вы уже хорошо натренируетесь в решении подобных задач, вы можете сразу выполнять этот шаг.

Однако если сейчас вы только приступаете к изучению этой темы, лучше никуда не торопиться, чтобы не допускать обидных ошибок. Итак, перед нами каноническая форма. Имеем:

3x − 1 = 0,5 −3

Это уже не логарифмическое уравнение, а линейное относительно переменной х. Чтобы решить его, давайте для начала разберемся с числом 0,5 в степени −3. Заметим, что 0,5 — это 1/2.

(1/2) −3 = (2/1) 3 = 8

Все десятичные дроби переводите в обычные, когда вы решаете логарифмическое уравнение.

Переписываем и получаем:

3x − 1 = 8
3x = 9
x = 3

Все, мы получили ответ. Первая задача решена.

Вторая задача

Переходим ко второй задаче:

Как видим, это уравнение уже не является простейшим. Уже хотя бы потому, что слева стоит разность, а не один-единственный логарифм по одному основанию.

Следовательно, нужно каким-то образом избавиться от этой разности. В данном случае все очень просто. Давайте внимательно посмотрим на основания: слева стоит число под корнем:

Общая рекомендация: во всех логарифмических уравнениях старайтесь избавиться от радикалов, т. е. от записей с корнями и переходить к степенным функциям, просто потому что показатели этих степеней легко выносятся за знак логарифма и в конечном счета такая запись существенно упрощает и ускоряет вычисления. Вот давайте так и запишем:

Теперь вспоминаем замечательное свойство логарифма: из аргумента, а также из основания можно выносить степени. В случае с основаниями происходит следующее:

log a k b = 1/k loga b

Другими словами, число, которое стояло в степени основания, выносится вперед и при этом переворачивается, т. е. становится обратным числом. В нашем случае стояла степень основания с показателем 1/2. Следовательно, мы можем вынести ее как 2/1. Получим:

5 · 2 log 5 x − log 5 x = 18
10 log 5 x − log 5 x = 18

Обратите внимание: ни в коем случае нельзя избавляться от логарифмов на этом шаге. Вспомните математику 4—5 класса и порядок действий: сначала выполняется умножение, а лишь затем — сложение и вычитание. В данном случае мы из 10 элементов вычитаем один такой же:

9 log 5 x = 18
log 5 x = 2

Теперь наше уравнение выглядит как надо. Это простейшая конструкция, и мы решаем его с помощью канонической формы:

log 5 x = log 5 5 2
x = 5 2
x = 25

Вот и все. Вторая задача решена.

Третий пример

Переходим к третьей задаче:

lg (x + 3) = 3 + 2 lg 5

Напомню следующую формулу:

lg b = log 10 b

Если вас по каким-либо причинам смущает запись lg b , то при выполнении всех вычислений вы можете записать просто log 10 b . С десятичными логарифмами можно работать так же, как и с другими: выносить степени, складывать и представлять любые числа в виде lg 10.

Вот именно этими свойствами мы сейчас и воспользуемся для решения задачи, поскольку она не является простейшей, которую мы записали в самом начале нашего урока.

Для начала заметим, что множитель 2, стоящий перед lg 5, может быть внесен и станет степенью основания 5. Кроме того, свободное слагаемое 3 также представимо в виде логарифма — это очень легко наблюдать из нашей записи.

Судите сами: любое число можно представить в виде log по основанию 10:

3 = log 10 10 3 = lg 10 3

Перепишем исходную задачу с учетом полученных изменений:

lg (x − 3) = lg 1000 + lg 25
lg (x − 3) = lg 1000 · 25
lg (x − 3) = lg 25 000

Перед нами снова каноническая форма, причем мы получили ее, минуя стадию преобразований, т. е. простейшее логарифмическое уравнение у нас нигде не всплывало.

Именно об этом я и говорил в самом начале урока. Каноническая форма позволяет решать более широкий класс задач, нежели стандартная школьная формула, которую дают большинство школьных учителей.

Ну и все, избавляемся от знака десятичного логарифма, и получаем простую линейную конструкцию:

x + 3 = 25 000
x = 24 997

Все! Задача решена.

Замечание по поводу области определения

Тут бы хотелось привести важное замечание по поводу области определения. Наверняка сейчас найдутся ученики и учителя, которые скажут: «Когда мы решаем выражения с логарифмами, необходимо обязательно помнить, что аргумент f (x ) должен быть больше нуля!» В связи с этим возникает логичный вопрос: почему ни в одной из рассмотренных задач мы не требовали, чтобы это неравенство выполнялось?

Не переживайте. Никаких лишних корней в этих случаях не возникнет. И это еще одна замечательная хитрость, которая позволяет ускорить решение. Просто знайте, что если в задаче переменная х встречается лишь в одном месте (а точнее — в одном-единственном аргументе одного-единственного логарифма), и больше нигде в нашем случае нет переменной х, то записывать область определения не нужно , потому что она будет выполняться автоматически.

Судите сами: в первом уравнении мы получили, что 3х − 1, т. е. аргумент должен быть равен 8. Это автоматически означает, что 3х − 1 будет больше нуля.

С тем же успехом мы можем записать, что во втором случае х должен быть равен 5 2 , т. е. он заведомо больше нуля. А в третьем случае, где х + 3 = 25 000, т. е. опять же заведомо больше нуля. Другими словами, область определения выполняется автоматически, но только при условии, что х встречается лишь в аргументе лишь одного логарифма.

Вот и все, что нужно знать для решения простейших задач. Уже одно это правило вместе с правилами преобразования позволит вам решать очень широкий класс задач.

Но давайте будем честными: для того, чтобы окончательно разобраться с этим приемом, чтобы научиться применять каноническую форму логарифмического уравнения, недостаточно просто посмотреть один видеоурок. Поэтому прямо сейчас скачайте варианты для самостоятельного решения, которые прилагаются к данному видеоуроку и начните решать хотя бы одну из этих двух самостоятельных работ.

Времени у вас уйдет буквально несколько минут. А вот эффект от такого обучения будет намного выше по сравнению с тем, если бы вы просто просмотрели данный видеоурок.

Надеюсь, этот урок поможет разобраться вам с логарифмическими уравнениями. Применяйте каноническую форму, упрощайте выражения с помощью правил работы с логарифмами — и никакие задачи вам будут не страшны. А у меня на сегодня все.

Учет области определения

Теперь поговорим об области определения логарифмической функции, а также о том, как это влияет на решение логарифмических уравнений. Рассмотрим конструкцию вида

log a f (x ) = b

Такое выражение называется простейшим — в нем лишь одна функция, а числа а и b — это именно числа, а ни в коем случае не функция, зависящая от переменной х. Решается оно очень просто. Достаточно лишь использовать формулу:

b = log a a b

Данная формула является одним из ключевых свойств логарифма, и при подстановке в наше исходное выражение мы получим следующее:

log a f (x ) = log a a b

f (x ) = a b

Это уже знакомая формула из школьных учебников. У многих учеников наверняка возникнет вопрос: поскольку в исходном выражении функция f (x ) стоит под знаком log, на нее накладываются следующие ограничения:

f (х) > 0

Это ограничение действует потому, что логарифм от отрицательных чисел не существует. Так, может быть, вследствие этого ограничения следует ввести проверку на ответы? Быть может, их нужно подставлять в исходник?

Нет, в простейших логарифмических уравнениях дополнительная проверка излишня. И вот почему. Взгляните на нашу итоговую формулу:

f (x ) = a b

Дело в том, что число а в любом случае больше 0 — это требование тоже накладывается логарифмом. Число а является основанием. При этом на число b никаких ограничений не накладывается. Но это и неважно, потому что в какую бы степень мы бы не возводили положительное число, на выходе мы все равно получим положительное число. Таким образом, требование f (х) > 0 выполняется автоматически.

Что действительно стоит проверять, так это область определения функции, стоящей под знаком log. Там могут встречаться довольно непростые конструкции, и в процессе решения за ними обязательно нужно следить. Давайте посмотрим.

Первая задача:

Первый шаг: преобразуем дробь справа. Получим:

Избавляемся от знака логарифма и получаем обычное иррациональное уравнение:

Из полученных корней нас устраивает только первый, так как второй корень меньше нуля. Единственным ответом будет число 9. Все, задача решена. Никаких дополнительных проверок того, что выражение под знаком логарифма больше 0, не требуется, потому что оно не просто больше 0, а по условию уравнения оно равно 2. Следовательно, требование «больше нуля», выполняется автоматически.

Переходим ко второй задаче:

Здесь все то же самое. Переписываем конструкцию, заменяя тройку:

Избавляемся от знаков логарифма и получаем иррациональное уравнение:

Возводим обе части в квадрат с учетом ограничений и получаем:

4 − 6x − x 2 = (x − 4) 2

4 − 6x − x 2 = x 2 + 8x + 16

x 2 + 8x + 16 −4 + 6x + x 2 = 0

2x 2 + 14x + 12 = 0 |:2

x 2 + 7x + 6 = 0

Решаем полученное уравнение через дискриминант:

D = 49 − 24 = 25

x 1 = −1

x 2 = −6

Но x = −6 нас не устраивает, потому что если мы подставим это число в наше неравенство, то получим:

−6 + 4 = −2 < 0

В нашем же случае требуется, чтобы было больше, чем 0 или в крайнем случае равно. А вот x = −1 нам подходит:

−1 + 4 = 3 > 0

Единственным ответом в нашем случае будет x = −1. Вот и все решение. Давайте вернемся в самое начало наших вычислений.

Основной вывод из этого урока: проверять ограничения для функции в простейших логарифмических уравнениях не требуется. Потому что в процессе решения все ограничения выполняются автоматически.

Однако это ни в коем случае не означает, что о проверке можно вообще забыть. В процессе работы над логарифмическим уравнением вполне может перейти в иррациональное, в котором будут свои ограничения и требования к правой части, в чем мы сегодня и убедились на двух различных примерах.

Смело решайте такие задачи и будьте особо внимательные, если в аргументе стоит корень.

Логарифмические уравнения с разными основаниями

Продолжаем изучать логарифмические уравнения и разберем еще два довольно интересных приема, с помощью которых модно решать более сложные конструкции. Но для начала вспомним, как решаются простейшие задачи:

log a f (x ) = b

В этой записи а и b являются именно числами, а в функции f (x ) должна присутствовать переменная х, и только там, т. е. х должен находиться только в аргументе. Преобразовывать такие логарифмические уравнения мы будем с помощью канонической формы. Для этого заметим, что

b = log a a b

Причем a b — это именно аргумент. Давайте перепишем это выражение следующим образом:

log a f (x ) = log a a b

Мы именно этого и добиваемся, чтобы и слева, и справа стоял логарифм по основанию а. В этом случае мы можем, образно говоря, зачеркнуть знаки log, а с точки зрения математики мы можем сказать, что мы просто приравниваем аргументы:

f (x ) = a b

В результате мы получим новое выражение, которое будет решаться намного проще. Давайте применим это правило к нашим сегодняшним задачам.

Итак, первая конструкция:

Прежде всего, отмечу, что справа стоит дробь, в знаменателе которой находится log. Когда вы видите такое выражение, не лишним будет вспомнить замечательное свойство логарифмов:

Переводя на русский язык, это означает, что любой логарифм может быть представлен в виде частного двух логарифмов с любым основанием с. Разумеется, 0 < с ≠ 1.

Так вот: у этой формулы есть один замечательный частный случай, когда переменная с равна переменной b . В этом случае мы получим конструкцию вида:

Именно такую конструкцию мы наблюдаем от знака справа в нашем уравнении. Давайте заменим эту конструкцию на log a b , получим:

Другими словами, в сравнении с исходным заданием, мы поменяли местами аргумент и основание логарифма. Взамен нам пришлось перевернуть дробь.

Вспоминаем, что любую степень можно выносить из основания по следующему правилу:

Другими словами, коэффициент k , который является степенью основания, выносится как перевернутая дробь. Давайте вынесем ее как перевернутую дробь:

Дробный множитель нельзя оставлять спереди, потому что в этом случае мы не сможем представить данную запись как каноническую форму (ведь в канонической форме перед вторым логарифмом никакой дополнительный множитель не стоит). Следовательно, давайте внесем дробь 1/4 в аргумент в виде степени:

Теперь мы приравниваем аргументы, основания которых одинаковые (а основания у нас действительно одинаковые), и записываем:

x + 5 = 1

x = −4

Вот и все. Мы получили ответ к первому логарифмическому уравнению. Обратите внимание: в исходной задаче переменная х встречается лишь в одном log, причем стоит в его аргументе. Следовательно, проверять область определения не требуется, и наше число х = −4 действительно является ответом.

Теперь переходим ко второму выражению:

lg 56 = lg 2 log 2 7 − 3lg (x + 4)

Здесь помимо обычных логарифмов, нам придется работать с lg f (x ). Как решать такое уравнение? Неподготовленному ученику может показаться, что это какая-то жесть, но на самом деле все решается элементарно.

Внимательно посмотрите на слагаемое lg 2 log 2 7. Что мы можем о нем сказать? Основания и аргументы log и lg совпадают, и это должно наводить на некоторые мысли. Давайте еще раз вспомним, как выносятся степени из-под знака логарифма:

log a b n = nlog a b

Другими словами, то, что являлось степенью при числе b в аргументе, становится множителем перед самим log. Давайте применим эту формулу для выражения lg 2 log 2 7. Пусть вас не пугает lg 2 — это самое обычное выражение. Можно переписать его следующим образом:

Для него справедливы все правила, которые действуют для любого другого логарифма. В частности, множитель, стоящий спереди, можно внести в степень аргумента. Давайте запишем:

Очень часто ученики в упор не видят это действие, потому что нехорошо вносить один log под знак другого. На самом деле ничего криминального в этом нет. Более того, мы получаем формулу, которая легко считается, если помнить важное правило:

Эту формулу можно рассматривать и как определение, и как одно из его свойств. В любом случае, если вы преобразуете логарифмическое уравнение, эту формулу вы должны знать точно так же, как и представление любого числа в виде log.

Возвращаемся к нашей задаче. Переписываем его с учетом того факта, что первое слагаемое справа от знака равенства будет равно просто lg 7. Имеем:

lg 56 = lg 7 − 3lg (x + 4)

Давайте перенесем lg 7 влево, получим:

lg 56 − lg 7 = −3lg (x + 4)

Вычитаем выражения слева, потому что они имеют одно и то же основание:

lg (56/7) = −3lg (x + 4)

Теперь давайте внимательно посмотрим на уравнение, которое мы получили. Оно практически является канонической формой, однако справа присутствует множитель −3. Давайте внесем его в аргумент правого lg:

lg 8 = lg (x + 4) −3

Перед нами каноническая форма логарифмического уравнения, поэтому мы вычеркиваем знаки lg и приравниваем аргументы:

(x + 4) −3 = 8

x + 4 = 0,5

Вот и все! Мы решили второе логарифмическое уравнение. При этом никаких дополнительных проверок не требуется, потому что в исходной задаче х присутствовал лишь в одном аргументе.

Перечислю еще раз ключевые моменты этого урока.

Главная формула, которая изучается во всех уроках на этой странице, посвященной решению логарифмических уравнений — это каноническая форма. И пусть вас не пугает то, что в большинстве школьных учебников вас учат решать подобные задачи по-другому. Данный инструмент работает очень эффективно и позволяет решать гораздо более широкий класс задач, нежели простейшие, которые мы изучали в самом начале нашего урока.

Кроме того, для решения логарифмических уравнений полезно будет знать основные свойства. А именно:

  1. Формулу перехода к одному основанию и частный случай, когда мы переворачиваем log (это очень пригодилось нам в первой задаче);
  2. Формулу внесения и вынесения степеней из-под знака логарифма. Здесь многие ученики зависают и в упор не видят, что выносимая и вносимая степень сама может содержать log f (x ). Ничего страшного в этом нет. Мы можем вносить один log по знак другого и при этом существенно упрощать решение задачи, что мы и наблюдаем во втором случае.

В заключении хотел бы добавить, что проверять область определения в каждом из этих случае не требуется, потому что везде переменная х присутствует только в одном знаке log, и при этом находится в его аргументе. Как следствие, все требования области определения выполняются автоматически.

Задачи с переменным основанием

Сегодня мы рассмотрим логарифмические уравнения, которые для многих учеников кажутся нестандартными, а то и вовсе нерешаемыми. Речь идет об выражениях, в основании которых стоят не числа, а переменные и даже функции. Решать такие конструкции мы будем с помощью нашего стандартного приема, а именно через каноническую форму.

Для начала вспомним, как решаются простейшие задачи, в основании которых стоят обычные числа. Итак, простейшей называется конструкция вида

log a f (x ) = b

Для решения таких задач мы можем использовать следующую формулу:

b = log a a b

Переписываем наше исходное выражение и получаем:

log a f (x ) = log a a b

Затем мы приравниваем аргументы, т. е. записываем:

f (x ) = a b

Таким образом мы избавляемся от знака log и решаем уже обычную задачу. При этом полученные при решении корни и будут корнями исходного логарифмического уравнения. Кроме того, запись, когда и слева, и справа стоит по одному и тому же логарифму с одним и тем же основанием, как раз и называется канонической формой. Именно к такой записи мы будем пытаться свести сегодняшние конструкции. Итак, поехали.

Первая задача:

log x − 2 (2x 2 − 13x + 18) = 1

Заменяем 1 на log x − 2 (x − 2) 1 . Та степень, которую мы наблюдаем у аргумента, это, на самом деле то число b , которое стояло справа от знака равенства. Таким образом, перепишем наше выражение. Получим:

log x − 2 (2x 2 − 13x + 18) = log x − 2 (x − 2)

Что мы видим? Перед нами каноническая форма логарифмического уравнения, поэтому мы смело можем приравнять аргументы. Получим:

2x 2 − 13x + 18 = x − 2

Но на этом решение не заканчивается, потому что данное уравнение не равносильно исходному. Ведь полученная конструкция состоит из функций, которые определены на всей числовой прямой, а наши исходные логарифмы определены не везде и не всегда.

Поэтому мы должны отдельно записать область определения. Давайте не будем мудрить и для начала запишем все требования:

Во-первых, аргумент каждого из логарифмов должен быть больше 0:

2x 2 − 13x + 18 > 0

x − 2 > 0

Во-вторых, основание должно быть не только больше 0, но и отлично от 1:

x − 2 ≠ 1

В итоге получим систему:

Но вы не пугайтесь: при обработке логарифмических уравнений такую систему можно существенно упростить.

Судите сами: с одной стороны, от нас требуется, чтобы квадратичная функция была больше нуля, а с другой стороны — эта квадратичная функция приравнивается к некому линейному выражению, от которого также требуется, чтобы оно было больше нуля.

В таком случае, если мы требуем, чтобы x − 2 > 0, то автоматически будет выполняться и требование 2x 2 − 13x + 18 > 0. Поэтому мы можем смело зачеркнуть неравенство, содержащее квадратичную функцию. Таким образом, количество выражений, которое содержится в нашей системе, уменьшится до трех.

Разумеется, с тем же успехом мы могли бы зачеркнуть и линейное неравенство, т. е. вычеркнуть x − 2 > 0 и потребовать, чтобы 2x 2 − 13x + 18 > 0. Но согласитесь, что решить простейшее линейное неравенство гораздо быстрее и проще, чем квадратичное, пусть даже при условии, что в результате решения всей этой системы мы получим одни и те же корни.

В общем, по возможности старайтесь оптимизировать вычисления. И в случае с логарифмическими уравнениями вычеркивайте самые сложные неравенства.

Давайте перепишем нашу систему:

Вот такая система из трех выражений, с двумя из которых мы, по сути, уже разобрались. Давайте отдельно выпишем квадратное уравнение и решим его:

2x 2 − 14x + 20 = 0

x 2 − 7x + 10 = 0

Перед нами приведенный квадратный трехчлен и, следовательно, мы можем воспользоваться формулами Виета. Получим:

(х − 5)(х − 2) = 0

x 1 = 5

x 2 = 2

А теперь возвращаемся к нашей системе и обнаруживаем, что х = 2 нас не устраивает, потому что от нас требуется, чтобы х был строго больше, чем 2.

А вот х = 5 нас вполне устраивает: число 5 больше, чем 2, и при этом 5 не равно 3. Следовательно, единственным решением данной системы будет являться х = 5.

Все, задача решена, в т. ч. с учетом ОДЗ. Переходим ко второму уравнению. Здесь нас ждут более интересные и содержательные выкладки:

Первый шаг: как и в прошлый раз, приводим все это дело к канонической форме. Для этого число 9 мы можем записать следующим образом:

Основание с корнем можно не трогать, а вот аргумент лучше преобразовать. Давайте перейдем от корня в степень с рациональным показателем. Запишем:

Давайте я не буду переписывать все наше большое логарифмическое уравнение, а просто сразу приравняю аргументы:

x 3 + 10x 2 + 31x + 30 = x 3 + 9x 2 + 27x + 27

x 2 + 4x + 3 = 0

Перед нами вновь приведенный квадратный трехчлен, воспользуемся формулами Виета и запишем:

(х + 3)(х + 1) = 0

x 1 = −3

x 2 = −1

Итак, мы получили корни, но никто нам не гарантировал, что они подойдут к исходному логарифмическому уравнению. Ведь знаки log накладывают дополнительные ограничения (здесь мы должны были бы записать систему, но из-за громоздкости всей конструкции я решил посчитать область определения отдельно).

В первую очередь, вспоминаем, что аргументы должны быть больше 0, а именно:

Это и есть требования, накладываемые областью определения.

Сразу заметим, что поскольку мы приравниваем первые два выражения системы друг к другу, то любое из них мы можем вычеркнуть. Давайте вычеркнем первую, потому что она выглядит более угрожающе, нежели вторая.

Кроме того, заметим, что решением второго и третьего неравенства будут одни и те множества (куб какого-то числа больше нуля, если само это число больше нуля; аналогично и с корнем третьей степени — эти неравенства полностью аналогичны, поэтому одно из них мы можем вычеркнуть).

А вот с третьим неравенством такое не пройдет. Избавимся от знака радикала, стоящего слева, для чего возведем обе части в куб. Получим:

Итак, мы получаем следующие требования:

− 2 ≠ x > −3

Какой из наших корней:x 1 = −3 или x 2 = −1 отвечает этим требованиям? Очевидно, что только х = −1, потому что х = −3 не удовлетворяет первому неравенству (ибо неравенство у нас строгое). Итого возвращаясь к нашей задаче, мы получаем один корень: х = −1. Вот и все, задача решена.

Еще раз ключевые моменты данной задачи:

  1. Не стесняйтесь применять и решать логарифмические уравнения с помощью канонической формы. Ученики, которые делают такую запись, а не переходят напрямую от исходной задачи к конструкции типа log a f (x ) = b , допускают намного меньше ошибок, чем те, которые куда-то спешат, пропуская промежуточные шаги вычислений;
  2. Как только в логарифме появляется переменное основание, задача перестает быть простейшей. Следовательно, при его решении необходимо учитывать область определения: аргументы должны быть больше нуля, а основания — не только больше 0, но еще они не должны быть равны 1.

Накладывать последние требования на итоговые ответы можно по-разному. Например, можно решать целую систему, содержащую все требования к области определения. С другой стороны, можно сначала решить саму задачу, а затем вспомнить про область определения, отдельно проработать ее в виде системы и наложить на полученные корни.

Какой способ выбирать при решении конкретного логарифмического уравнения, решать только вам. В любом случае ответ получится один и тот же.

На уравнениях такого вида многие ученики «зависают». При этом сами задачи отнюдь не являются сложными — достаточно просто выполнить грамотную замену переменной, для чего следует научиться выделять устойчивые выражения.

В дополнение к этому уроку вас ждет довольно объемная самостоятельная работа, состоящая из двух вариантов по 6 задач в каждом.

Метод группировки

Сегодня мы разберем два логарифмических уравнения, одно из которых не решается «напролом» и требует специальных преобразований, а второе... впрочем, не буду рассказывать все сразу. Смотрите видео, скачивайте самостоятельную работу — и учитесь решать сложные задачи.

Итак, группировка и вынесение общих множителей за скобку. Дополнительно я расскажу вам, какие подводные камни несет область определения логарифмов, и как небольшие замечания по области определений могут существенно менять как корни, так и все решение.

Начнем из группировки. Нам нужно решить следующее логарифмическое уравнение:

log 2 x · log 2 (x − 3) + 1 = log 2 (x 2 − 3x )

В первую очередь отметим, что x 2 − 3x можно разложить на множители:

log 2 x (x − 3)

Затем вспоминаем замечательную формулу:

log a fg = log a f + log a g

Сразу же небольшое замечание: данная формула прекрасно работает, когда а, f и g — обычные числа. Но когда вместо них стоят функции, данные выражения перестают быть равноправными. Представьте себе такую гипотетическую ситуацию:

f < 0; g < 0

В этом случае произведение fg будет положительным, следовательно, log a (fg ) будет существовать, а вот log a f и log a g отдельно существовать не будут, и выполнить такое преобразование мы не сможем.

Игнорирование данного факта приведет к сужению области определения и, как следствие, к потере корней. Поэтому прежде чем выполнять такое преобразование, нужно обязательно заранее убедиться, что функции f и g положительные.

В нашем случае все просто. Поскольку в исходном уравнении есть функция log 2 x , то x > 0 (ведь переменная x стоит в аргументе). Также имеется log 2 (x − 3), поэтому x − 3 > 0.

Следовательно, в функции log 2 x (x − 3) каждый множитель будет больше нуля. Поэтому можно смело раскладывать произведение на сумму:

log 2 x log 2 (x − 3) + 1 = log 2 x + log 2 (x − 3)

log 2 x log 2 (x − 3) + 1 − log 2 x − log 2 (x − 3) = 0

На первый взгляд может показаться, что легче не стало. Напротив: количество слагаемых лишь увеличились! Чтобы понять, как действовать дальше, введем новые переменные:

log 2 x = а

log 2 (x − 3) = b

a · b + 1 − a − b = 0

А теперь сгруппируем третье слагаемое с первым:

(a · b − a ) + (1 − b ) = 0

a (1 · b − 1) + (1 − b ) = 0

Заметим, что и в первой, и во второй скобке стоит b − 1 (во втором случае придется вынести «минус» за скобку). Разложим нашу конструкцию на множители:

a (1 · b − 1) − (b − 1) = 0

(b − 1)(а · 1 − 1) = 0

А теперь вспоминаем наше замечательно правило: произведение равно нулю, когда хотя бы один из множителей равен нулю:

b − 1 = 0 ⇒ b = 1;

a − 1 = 0 ⇒ a = 1.

Вспоминаем, что такое b и а. Получим два простейших логарифмических уравнения, в которых останется лишь избавиться от знаков logи приравнять аргументы:

log 2 x = 1 ⇒ log 2 x = log 2 2 ⇒ x 1 =2;

log 2 (x − 3) = 1 ⇒ log 2 (x − 3) = log 2 2 ⇒ x 2 = 5

Мы получили два корня, но это не решение исходного логарифмического уравнения, а лишь кандидаты в ответ. Теперь проверим область определения. Для первого аргумента:

x > 0

Оба корня удовлетворяют первому требованию. Переходим ко второму аргументу:

x − 3 > 0 ⇒ x > 3

А вот здесь уже x = 2 нас не удовлетворяет, зато x = 5 вполне нас устраивает. Следовательно, единственным ответом будет x = 5.

Переходим ко второму логарифмическому равнению. На первый взгляд, оно существенно проще. Однако в процессе его решения мы рассмотрим тонкие моменты, связанные с областью определения, незнание которых существенно усложняет жизнь начинающим ученикам.

log 0,7 (x 2 − 6x + 2) = log 0,7 (7 − 2x )

Перед нами каноническая форма логарифмического уравнения. Ничего преобразовывать не нужно — даже основания одинаковые. Поэтому просто приравниваем аргументы:

x 2 − 6x + 2 = 7 − 2x

x 2 − 6x + 2 − 7 + 2x = 0

x 2 − 4x − 5 = 0

Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

(x − 5) (x + 1) = 0;

x − 5 = 0 ⇒ x = 5;

x + 1 = 0 ⇒ x = −1.

Но эти корни еще не являются окончательными ответами. Нужно найти область определения, поскольку в исходном уравнении присутствуют два логарифма, т.е. учет области определения строго обязателен.

Итак, выпишем область определения. С одной стороны, аргумент первого логарифма должен быть больше нуля:

x 2 − 6x + 2 > 0

С другой — второй аргумент тоже должен быть больше нуля:

7 − 2x > 0

Эти требования должны выполняться одновременно. И вот тут начинается самое интересное. Безусловно, мы можем решить каждое из этих неравенств, затем пересечь их и найти область определения всего уравнения. Но зачем так усложнять себе жизнь?

Давайте заметим одну тонкость. Избавляясь от знаков log, мы приравниваем аргументы. Отсюда следует, что требования x 2 − 6x + 2 > 0 и 7 − 2x > 0 равносильны. Как следствие, любое из двух неравенств можно вычеркнуть. Давайте вычеркнем самое сложное, а себе оставим обычное линейное неравенство:

−2x > −7

x < 3,5

Поскольку мы делили обе части на отрицательное число, знак неравенства поменялся.

Итак, мы нашли ОДЗ без всяких квадратных неравенств, дискриминантов и пересечений. Теперь осталось просто выбрать корни, которые лежат на данном интервале. Очевидно, что нас устроит лишь x = −1, потому что x = 5 > 3,5.

Можно записать ответ: x = 1 является единственным решением исходного логарифмического уравнения.

Выводы из данного логарифмического уравнения следующие:

  1. Не бойтесь раскладывать логарифмы на множители, а потом множители раскладывать на сумму логарифмов. Однако помните, что разбивая произведение на сумму двух логарифмов, вы тем самым сужаете область определения. Поэтому прежде чем выполнять такое преобразование, обязательно проверьте, каковы требования области определения. Чаще всего никаких проблем не возникает, однако лишний раз перестраховаться не помешает.
  2. Избавляясь от канонической формы, старайтесь оптимизировать вычисления. В частности, если от нас требуется, чтобы f > 0 и g > 0, но в самом уравнении f = g , то смело вычеркиваем одно из неравенств, оставляя себе лишь самое простое. Область определения и ответы при этом никак не пострадают, а вот объем вычислений существенно сократится.

Вот, собственно, и все, что я хотел рассказать о группировке.:)

Типичные ошибки при решении

Сегодня мы разберем два типичных логарифмических уравнения, на которых спотыкаются многие ученики. На примере этих уравнения мы увидим, какие ошибки чаще всего допускаются в процессе решения и преобразования исходных выражений.

Дробно-рациональные уравнения с логарифмами

Сразу следует отметить, что это довольно коварный тип уравнений, в которых отнюдь не всегда сразу присутствует дробь с логарифмом где-то в знаменателе. Однако в процессе преобразований такая дробь обязательно возникнет.

При этом будьте внимательны: в процессе преобразований изначальная область определения логарифмов может существенно измениться!

Переходим к еще более жестким логарифмическим уравнениям, содержащим дроби и переменные основания. Чтобы за один короткий урок успеть больше, я не буду рассказывать элементарную теорию. Сразу перейдем к задачам:

4 log 25 (x − 1) − log 3 27 + 2 log x − 1 5 = 1

Посмотрев на это уравнение, кто-то спросит: «При чем здесь дробно-рациональное уравнение? Где в этом уравнении дробь?» Давайте не будем спешить и внимательно посмотрим на каждое слагаемое.

Первое слагаемое: 4 log 25 (x − 1). Основанием логарифма является число, но в аргументе стоит функция от переменной x . С этим мы пока ничего сделать не можем. Идем дальше.

Следующее слагаемое: log 3 27. Вспоминаем, что 27 = 3 3 . Следовательно, весь логарифм мы можем переписать следующим образом:

log 3 27 = 3 3 = 3

Итак, второе слагаемое — это просто тройка. Третье слагаемое: 2 log x − 1 5. Тут тоже не все просто: в основании стоит функция, в аргументе — обычное число. Предлагаю перевернуть весь логарифм по следующей формуле:

log a b = 1/log b a

Такое преобразование можно выполнить только если b ≠ 1. Иначе логарифм, который получится в знаменателе второй дроби, просто не будет существовать. В нашем случае b = 5, поэтому все в порядке:

2 log x − 1 5 = 2/log 5 (x − 1)

Перепишем исходное уравнение с учетом полученных преобразований:

4 log 25 (x − 1) − 3 + 2/ log 5 (x − 1) = 1

В знаменателе дроби у нас стоит log 5 (x − 1), а в первом слагаемом мы имеем log 25 (x − 1). Но 25 = 5 2 , поэтому выносим квадрат из основания логарифма по правилу:

Другими словами, степень в основании логарифма становится дробью спереди. А выражение перепишется так:

4 1/2 log 5 (x − 1) − 3 + 2/ log 5 (x − 1) − 1 = 0

У нас получилось длинное уравнение с кучей одинаковых логарифмов. Введем новую переменную:

log 5 (x − 1) = t;

2t − 4 + 2/t = 0;

А вот это уже дробно-рациональное уравнение, которое решается средствами алгебры 8—9 класса. Для начала разделим все на двойку:

t − 2 + 1/t = 0;

(t 2 − 2t + 1)/t = 0

В скобках стоит точный квадрат. Свернем его:

(t − 1) 2 /t = 0

Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Никогда не забывайте про этот факт:

(t − 1) 2 = 0

t = 1

t ≠ 0

Вспоминаем, что такое t :

log 5 (x − 1) = 1

log 5 (x − 1) = log 5 5

Избавляемся от знаков log, приравниваем их аргументы, и получаем:

x − 1 = 5 ⇒ x = 6

Все. Задача решена. Но давайте вернемся к исходному уравнению и вспомним, что там присутствовали сразу два логарифма с переменной x . Поэтому нужно выписать область определения. Поскольку x − 1 стоит в аргументе логарифма, это выражение должно быть больше нуля:

x − 1 > 0

С другой стороны, тот же x − 1 присутствует и в основании, поэтому должен отличаться от единицы:

x − 1 ≠ 1

Отсюда заключаем:

x > 1; x ≠ 2

Эти требования должны выполняться одновременно. Значение x = 6 удовлетворяет обоим требованиям, поэтому является x = 6 окончательным решением логарифмического уравнения.

Переходим ко второй задаче:

Вновь не будем спешить и посмотрим на каждое слагаемое:

log 4 (x + 1) — в основании стоит четверка. Обычное число, и его можно не трогать. Но в прошлый раз мы наткнулись на точный квадрат в основании, который пришлось выносить из-под знака логарифма. Давайте сейчас сделаем то же самое:

log 4 (x + 1) = 1/2 log 2 (x + 1)

Фишка в том, что у нас уже есть логарифм с переменной x , хоть и в основании — он является обратным к логарифму, который мы только что нашли:

8 log x + 1 2 = 8 · (1/log 2 (x + 1)) = 8/log 2 (x + 1)

Следующее слагаемое — log 2 8. Это константа, поскольку и аргументе, и в основании стоят обычные числа. Найдем значение:

log 2 8 = log 2 2 3 = 3

То же самое мы можем сделать и с последним логарифмом:

Теперь перепишем исходное уравнение:

1/2 · log 2 (x + 1) + 8/log 2 (x + 1) − 3 − 1 = 0;

log 2 (x + 1)/2 + 8/log 2 (x + 1) − 4 = 0

Приведем все к общему знаменателю:

Перед нами опять дробно-рациональное уравнение. Введем новую переменную:

t = log 2 (x + 1)

Перепишем уравнение с учетом новой переменной:

Будьте внимательны: на этом шаге я поменял слагаемые местами. В числителе дроби стоит квадрат разности:

Как и в прошлый раз, дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля:

(t − 4) 2 = 0 ⇒ t = 4;

t ≠ 0

Получили один корень, который удовлетворяет всем требованиям, поэтому возвращаемся к переменной x :

log 2 (x + 1) = 4;

log 2 (x + 1) = log 2 2 4;

x + 1 = 16;

x = 15

Все, мы решили уравнение. Но поскольку в исходном уравнении присутствовало несколько логарифмов, необходимо выписать область определения.

Так, выражение x + 1 стоит в аргументе логарифма. Поэтому x + 1 > 0. С другой стороны, x + 1 присутствует и в основании, т.е. x + 1 ≠ 1. Итого:

0 ≠ x > −1

Удовлетворяет ли найденный корень данным требованиям? Безусловно. Следовательно, x = 15 является решением исходного логарифмического уравнения.

Напоследок хотел бы сказать следующее: если вы смотрите на уравнение и понимаете, что вам предстоит решать что-то сложное и нестандартное, по старайтесь выделить устойчивые конструкции, которые впоследствии будут обозначены другой переменной. Если же какие-то слагаемые вообще не содержат переменную x , их зачастую можно просто вычислить.

Вот и все, о чем я хотел сегодня рассказать. Надеюсь, этот урок поможет вам в решении сложных логарифмических уравнений. Смотрите другие видеоуроки, скачивайте и решайте самостоятельные работы, и до встречи в следующем видео!


Примеры:

\(\log_{2}{⁡x} = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡{(x^2-3)}=\log_3⁡{(2x)}\)
\(\log_{x+1}{(x^2+3x-7)}=2\)
\(\lg^2⁡{(x+1)}+10=11 \lg⁡{(x+1)}\)

Как решать логарифмические уравнения:

При решении логарифмического уравнения нужно стремиться преобразовать его к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), после чего сделать переход к \(f(x)=g(x)\).

\(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) \(⇒\) \(f(x)=g(x)\).


Пример: \(\log_2⁡(x-2)=3\)

Решение:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Проверка: \(10>2\) - подходит по ОДЗ
Ответ: \(x=10\)

ОДЗ:
\(x-2>0\)
\(x>2\)

Очень важно! Этот переход можно делать только если:

Вы написали для исходного уравнения, и в конце проверите, входят ли найденные в ОДЗ. Если это не сделать, могут появиться лишние корни, а значит – неверное решение.

Число (или выражение) в слева и справа одинаково;

Логарифмы слева и справа - «чистые», то есть не должно быть никаких , умножений, делений и т.д. – только одинокие логарифмы по обе стороны от знака равно.

Например:

Заметим, что уравнения 3 и 4 можно легко решить, применив нужные свойства логарифмов.

Пример . Решить уравнение \(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\)

Решение :

Напишем ОДЗ: \(x>0\).

\(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\) ОДЗ: \(x>0\)

Слева перед логарифмом стоит коэффициент, справа сумма логарифмов. Это нам мешает. Перенесем двойку в показатель степени \(x\) по свойству: \(n \log_b{⁡a}=\log_b⁡{a^n}\). Сумму логарифмов представим в виде одного логарифма по свойству: \(\log_a⁡b+\log_a⁡c=\log_a{⁡bc}\)

\(\log_8⁡{x^2}=\log_8⁡25\)

Мы привели уравнение к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) и записали ОДЗ, значит можно выполнить переход к виду \(f(x)=g(x)\).

Получилось . Решаем его и получаем корни.

\(x_1=5\) \(x_2=-5\)

Проверяем подходят ли корни под ОДЗ. Для этого в \(x>0\) вместо \(x\) подставляем \(5\) и \(-5\). Эту операцию можно выполнить устно.

\(5>0\), \(-5>0\)

Первое неравенство верное, второе – нет. Значит \(5\) – корень уравнения, а вот \(-5\) – нет. Записываем ответ.

Ответ : \(5\)


Пример : Решить уравнение \(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\)

Решение :

Напишем ОДЗ: \(x>0\).

\(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\) ОДЗ: \(x>0\)

Типичное уравнение, решаемое с помощью . Заменяем \(\log_2⁡x\) на \(t\).

\(t=\log_2⁡x\)

Получили обычное . Ищем его корни.

\(t_1=2\) \(t_2=1\)

Делаем обратную замену

\(\log_2{⁡x}=2\) \(\log_2{⁡x}=1\)

Преобразовываем правые части, представляя их как логарифмы: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) и \(1=\log_2⁡2\)

\(\log_2{⁡x}=\log_2⁡4\) \(\log_2{⁡x}=\log_2⁡2 \)

Теперь наши уравнения имеют вид \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), и мы можем выполнить переход к \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Проверяем соответствие корней ОДЗ. Для этого в неравенство \(x>0\) вместо \(x\) подставляем \(4\) и \(2\).

\(4>0\) \(2>0\)

Оба неравенства верны. Значит и \(4\) и \(2\) корни уравнения.

Ответ : \(4\); \(2\).







2024 © psynadin.ru.