Броуновское движение — Гипермаркет знаний. Броуновское движение Немецкий ученый объяснил броуновское движение


Сегодня мы подробно рассмотрим важную тему - дадим определение броуновскому движению маленьких кусочков материи в жидкости или газе.

Карта и координаты

Некоторые школьники, замученные скучными уроками, не понимают, зачем изучать физику. А между тем, именно эта наука когда-то позволила открыть Америку!

Начнем издалека. Древним цивилизациям Средиземноморья в каком-то смысле повезло: они развивались на берегу закрытого внутреннего водоема. Средиземное море потому так и называется, что оно со всех сторон окружено сушей. И древние путешественники могли довольно далеко продвинуться со своей экспедицией, не теряя из вида берегов. Очертания суши помогали ориентироваться. И первые карты составлялись скорее описательно, чем географически. Благодаря этим относительно недалеким плаваниям греки, финикийцы и египтяне хорошо научились строить корабли. А где лучшее оборудование - там и стремление раздвинуть границы своего мира.

Поэтому в один прекрасный день европейские державы решили выйти в океан. Во время плавания по бескрайним просторам между материками моряки долгие месяцы видели только воду, и им надо было как-то ориентироваться. Определить свои координаты помогло изобретение точных часов и качественного компаса.

Часы и компас

Изобретение маленьких ручных хронометров очень выручило мореплавателей. Чтобы точно определить, где они находятся, им надо было иметь простейший инструмент, который измерял высоту солнца над горизонтом, и знать, когда именно полдень. А благодаря компасу капитаны судов знали, куда они направляются. И часы, и свойства магнитной стрелки изучали и создавали физики. Благодаря этому европейцам был открыт весь мир.

Новые континенты представляли собой terra incognita, неизведанные земли. На них росли странные растения и водились непонятные животные.

Растения и физика

Все естествоиспытатели цивилизованного мира ринулись изучать эти новые странные экологические системы. И конечно же, они стремились извлечь из них выгоду.

Роберт Броун был английским ботаником. Он совершал поездки в Австралию и на Тасманию, собирал там коллекции растений. Уже дома, в Англии, он много работал над описанием и классификацией привезенного материала. И ученый этот был очень дотошным. Однажды, наблюдая за движением пыльцы в соке растений, он заметил: мелкие частицы постоянно совершают хаотические зигзагообразные перемещения. В этом и состоит определение броуновского движения мелких элементов в газах и жидкостях. Благодаря открытию потрясающий ботаник вписал свое имя в историю физики!

Броун и Гуи

В европейской науке так принято: называть эффект или явление именем того, кто его обнаружил. Но часто это бывает случайно. А вот человек, который описывает, открывает важность или более подробно исследует физический закон, оказывается в тени. Так случилось и с французом Луи Жоржем Гуи. Именно он дал определение броуновскому движению (7 класс о нем точно не слышит, когда изучает эту тему по физике).

Исследования Гуи и свойства броуновского движения

Французский экспериментатор Луи Жорж Гуи наблюдал движение разного типа частиц в нескольких жидкостях, в том числе и в растворах. Наука того времени уже умела точно определять размер кусочков вещества до десятых долей микрометра. Исследуя, что такое броуновское движение (определение в физике этому явлению дал именно Гуи), ученый понял: интенсивность перемещения частиц увеличивается, если их поместить в менее вязкую среду. Будучи экспериментатором широкого спектра, он подвергал взвесь действию света и электромагнитных полей различной мощности. Ученый выяснил, что эти факторы никак не влияют на хаотические зигзагообразные скачки частиц. Гуи однозначно показал, что доказывает броуновское движение: тепловое перемещение молекул жидкости или газа.

Коллектив и масса

А теперь подробнее опишем механизм зигзагообразных скачков небольших кусочков материи в жидкости.

Любое вещество состоит из атомов или молекул. Эти элементы мира очень маленькие, ни один оптический микроскоп не способен их увидеть. В жидкости они все время колеблются и перемещаются. Когда любая видимая частица попадает в раствор, ее масса в тысячи раз больше одного атома. Броуновское движение молекул жидкости совершается хаотически. Но тем не менее все атомы или молекулы представляют собой коллектив, они связаны друг с другом, как люди, которые взялись за руки. Поэтому иногда так случается, что атомы жидкости с одной стороны частицы движутся так, что «давят» на нее, при этом с другой стороны от частицы создается менее плотная среда. Поэтому пылинка перемещается в пространстве раствора. В другом месте коллективное движение молекул жидкости случайно действует на другую сторону более массивного компонента. Именно так и совершается броуновское движение частиц.

Время и Эйнштейн

Если вещество обладает ненулевой температурой, его атомы совершают тепловые колебания. Поэтому даже в очень холодной или переохлажденной жидкости существует броуновское движение. Эти хаотические перескоки маленьких взвешенных частиц никогда не прекращаются.

Альберт Эйнштейн, пожалуй, самый знаменитый ученый двадцатого века. Всем, кто хоть сколько-нибудь интересуется физикой, известна формула E = mc 2 . Также многие могут вспомнить о фотоэффекте, за который ему дали Нобелевскую премию, и о специальной теории относительности. Но мало кто знает, что Эйнштейн разработал формулу для броуновского движения.

На основании молекулярно-кинетической теории ученый вывел коэффициент диффузии взвешенных частиц в жидкости. И произошло это в 1905 году. Формула выглядит так:

D = (R * T) / (6 * N A * a * π * ξ),

где D - искомый коэффициент, R - это универсальная газовая постоянная, T — абсолютная температура (выражается в Кельвинах), N A — постоянная Авогадро (соответствует одному молю вещества, или примерно 10 23 молекул), a — приблизительный средний радиус частиц, ξ — динамическая вязкость жидкости или раствора.

А уже в 1908 году французский физик Жан Перрен со своими студентами экспериментально доказали верность вычислений Эйнштейна.

Одна частица в поле воин

Выше мы описывали коллективное воздействие среды на много частиц. Но и один чужеродный элемент в жидкости может дать некоторые закономерности и зависимости. Например, если наблюдать за броуновской частицей долгое время, то можно зафиксировать все ее перемещения. И из этого хаоса возникнет стройная система. Среднее продвижение броуновской частицы вдоль какого-то одного направления пропорционально времени.

При экспериментах над частицей в жидкости были уточнены следующие величины:

  • постоянная Больцмана;
  • число Авогадро.

Помимо линейного движения, также свойственно хаотическое вращение. И среднее угловое смещение также пропорционально времени наблюдения.

Размеры и формы

После таких рассуждений может возникнуть закономерный вопрос: почему этот эффект не наблюдается для больших тел? Потому что когда протяженность погруженного в жидкость объекта больше определенной величины, то все эти случайные коллективные «толчки» молекул превращаются в постоянное давление, так как усредняются. И на тело уже действует общая Архимеда. Таким образом, большой кусок железа тонет, а металлическая пыль плавает в воде.

Размер частиц, на примере которых выявляется флуктуация молекул жидкости, не должен превышать 5 микрометров. Что касается объектов с большими размерами, то здесь этот эффект заметен не будет.

Бро́уновское движе́ние - беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение - наиболее наглядное экспериментальное подтверждение представлений молекулярно-кинетической теории о хаотическом тепловом движении атомов и молекул. Если промежуток наблюдения достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то средний квадрат проекции её смещения на какую-либо ось (в отсутствие других внешних сил) пропорционален времени.

При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времён). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом А в вязкой жидкости. Соотношения для А и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и постоянная Авогадро N А. Кроме поступательного броуновского движения, существует также вращательное броуновского движение - беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения. Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное броуновское движение.

Энциклопедичный YouTube

  • 1 / 5

    Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул - мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело , то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление . Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда - такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

    Открытие

    Теория броуновского движения

    Построение классической теории

    D = R T 6 N A π a ξ , {\displaystyle D={\frac {RT}{6N_{A}\pi a\xi }},}

    где D {\displaystyle D} - коэффициент диффузии , R {\displaystyle R} - универсальная газовая постоянная , T {\displaystyle T} - абсолютная температура , N A {\displaystyle N_{A}} - постоянная Авогадро , a {\displaystyle a} - радиус частиц, ξ {\displaystyle \xi } - динамическая вязкость .

    Экспериментальное подтверждение

    Формула Эйнштейна была подтверждена опытами Жана Перрена и его студентов в 1908-1909 гг. В качестве броуновских частиц они использовали зёрнышки смолы мастикового дерева и гуммигута - густого млечного сока деревьев рода гарциния . Справедливость формулы была установлена для различных размеров частиц - от 0,212 мкм до 5,5 мкм, для различных растворов (раствор сахара , глицерин), в которых двигались частицы .

    Броуновское движение как немарковский случайный процесс

    Хорошо разработанная за последнее столетие теория броуновского движения является приближенной. И хотя в большинстве практически важных случаев существующая теория даёт удовлетворительные результаты, в некоторых случаях она может потребовать уточнения. Так, экспериментальные работы, проведённые в начале XXI века в Политехническом университете Лозанны, Университете Техаса и Европейской молекулярно-биологической лаборатории в Гейдельберге (под руководством С. Дженей) показали отличие поведения броуновской частицы от теоретически предсказываемого теорией Эйнштейна - Смолуховского, что было особенно заметным при увеличении размеров частиц. Исследования затрагивали также анализ движения окружающих частиц среды и показали существенное взаимное влияние движения броуновской частицы и вызываемое ею движение частиц среды друг на друга, то есть наличие «памяти» у броуновской частицы, или, другими словами, зависимость её статистических характеристик в будущем от всей предыстории её поведения в прошлом. Данный факт не учитывался в теории Эйнштейна - Смолуховского.

    Процесс броуновского движения частицы в вязкой среде, вообще говоря, относится к классу немарковских процессов , и для более точного его описания необходимо использование интегральных стохастических уравнений.

    Броуновское движение

    Ученицы 10 "В" класса

    Онищук Екатерины

    Понятие Броуновского движения

    Закономерности Броуновского движения и применение в науке

    Понятие Броуновского движения с точки зрения теории Хаоса

    Движение бильярдного шарика

    Интеграция детермированных фракталов и хаос

    Понятие броуновского движения

    Броуновское движение, правильнее брауновское движение, тепловое движение частиц вещества (размерами в нескольких мкм и менее), находящихся во взвешенном состоянии в жидкости или в газе частиц. Причиной броуновского движения является ряд не скомпенсированных импульсов, которые получает броуновская частица от окружающих ее молекул жидкости или газа. Открыто Р. Броуном (1773 - 1858) в 1827. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды. Интенсивность Броуновского движения увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц.

    Последовательное объяснение Броуновского движения было дано А. Эйнштейном и М. Смолуховским в 1905-06 на основе молекулярно-кинетической теории. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причём импульсы различных молекул неодинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих её молекул, не будут точно компенсироваться. Поэтому в результате "бомбардировки" молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 10 14 раз в сек. При наблюдении Броуновского движения фиксируется (см. Рис. 1) положение частицы через равные промежутки времени. Конечно, между наблюдениями частица движется не прямолинейно, но соединение последовательных положений прямыми линиями даёт условную картину движения.


    Броуновское движение частицы гуммигута в воде (Рис.1)

    Закономерности Броуновского движения

    Закономерности Броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Общая картина Броуновского движения описывается законом Эйнштейна для среднего квадрата смещения частицы

    вдоль любого направления х. Если за время между двумя измерениями происходит достаточно большое число столкновений частицы с молекулами, то пропорционально этому времени t: = 2D

    Здесь D - коэффициент диффузии, который определяется сопротивлением, оказываемым вязкой средой движущейся в ней частице. Для сферических частиц радиуса, а он равен:

    D = kT/6pha, (2)

    где к - Больцмана постоянная, Т - абсолютная температура, h - динамическая вязкость среды. Теория Броунского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Случайный характер силы означает, что её действие за интервал времени t 1 совершенно не зависит от действия за интервал t 2 , если эти интервалы не перекрываются. Средняя за достаточно большое время сила равна нулю, и среднее смещение броуновской частицы Dc также оказывается нулевым. Выводы теории Броуновского движения блестяще согласуются с экспериментом, формулы (1) и (2) были подтверждены измерениями Ж. Перрена и Т. Сведберга (1906). На основе этих соотношений были экспериментально определены постоянная Больцмана и Авогадро число в согласии с их значениями, полученными др. методами. Теория Броуновского движения сыграла важную роль в обосновании статистической механики. Помимо этого, она имеет и практическое значение. Прежде всего, Броуновское движение ограничивает точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами Броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

    Понятие Броуновского движения с точки зрения теории Хаоса

    Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения.

    Частотные диаграммы, созданные при построении графика на основе Броуновских чисел так же можно преобразовать в музыку. Конечно, этот тип фрактальной музыки совсем не музыкален и может действительно утомить слушателя.

    Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера. Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как, например Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато.

    Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы. Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.

    ДВИЖЕНИЕ БИЛЛИАРДНОГО ШАРИКА

    Любой, кто когда-либо брал в руки кий для бильярда, знает, что ключ к игре - точность. Малейшая ошибка в угле начального удара может быстро привести к огромной ошибке в положении шарика всего после нескольких столкновений. Эта чувствительность к начальным условиям называемая хаосом возникает непреодолимым барьером для любого, кто надеется предсказать или управлять траекторией движения шарика больше чем после шести или семи столкновений. И не стоит думать, что проблема заключается в пыли на столе или в нетвердой руке. Фактически, если вы используете ваш компьютер для построения модели, содержащей бильярдный стол, не обладающий ни каким трением, нечеловеческим контролем точности позиционирования кия, вам все равно не удастся предсказывать траекторию шарика достаточно долго!

    Насколько долго? Это зависит частично от точности вашего компьютера, но в большей степени от формы стола. Для совершенно круглого стола, можно просчитать приблизительно до 500 положений столкновений с ошибкой около 0.1 процента. Но стоит изменить форму стола так, чтобы она стала хотя бы немножко неправильной (овальной), и непредсказуемость траектории может превышать 90 градусов уже после 10 столкновений! Единственный путь получить картинку общего поведения бильярдного шарика, отскакивающего от чистого стола - это изобразить угол отскока или длину дуги соответствующую каждому удару. Здесь приведены два последовательных увеличения такой фазово-пространственной картины.

    Каждая отдельная петля или область разброса точек представляет поведение шарика, происходящее от одного набора начальных условий. Область картинки, на которой отображаются результаты какого-то одного конкретного эксперимента, называется аттракторной областью для данного набора начальных условий. Как можно видеть форма стола, использованного для этих экспериментов является, основной частью аттракторных областей, которые повторяются последовательно в уменьшающемся масштабе. Теоретически, такое самоподобие должно продолжаться вечно и если мы будем увеличивать рисунок все больше и больше, мы бы получали все те же формы. Это называется очень популярным сегодня, словом фрактал.

    ИНТЕГРАЦИЯ ДЕТЕРМИНИРОВАННЫХ ФРАКТАЛОВ И ХАОС

    Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц.

    Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте, попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк.

    Для начала нужно сгенерировать Дерево Пифагора (слева). Необходимо сделать ствол потолще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.

    Что такое Броуновское движение

    Это движение характеризуется следующими чертами:

    • продолжается неограниченно долго без каких бы то ни было видимых изменений,
    • интенсивность движения броуновских частиц зависит от их размеров, но не зависит от их природы,
    • интенсивность возрастает с ростом температуры,
    • интенсивность возрастает с уменьшением вязкости жидкости или газа.

    Броуновское движение не является молекулярным движением, но служит непосредственным доказательством существования молекул и хаотического характера их теплового движения.

    Сущность Броуновского движения

    Сущность этого движения в следующем. Частица вместе с молекулами жидкости или газа образуют одну статистическую систему. В соответствии с теоремой о равномерном распределении энергии по степени свободы на каждую степень свободы приходится 1/2kT энергии. Энергия 2/3kT, приходящаяся на три поступательные степени свободы частицы, приводит к движению ее центра масс, которое наблюдается под микроскопом в виде дрожания частицы. Если броуновская частица достаточно жесткая, то еще 3/2kT энергии приходится на ее вращательные степени свободы. Поэтому при своем дрожании она испытывает еще и постоянные изменения ориентировки в пространстве.

    Можно объяснить броуновское движение и так: причиной Броуновского движения являются флуктуации давления, которое оказывается на поверхность малой частицы со стороны молекул среды. Сила и давление изменяется по модулю и направлению, в результате чего частица находится в беспорядочном движении.

    Движение броуновской частицы является случайным процессом. Вероятность (dw) того, что броуновская частица, находившаяся в однородной изотропной среде в начальный момент времени (t=0) в начале координат, сместится вдоль произвольно направленной (при t$>$0) оси Ox так, что ее координата будет лежать в интервале от x до x+dx, равна:

    где $\triangle x$- малое изменение координаты частицы, вследствие флуктуации.

    Рассмотрим положение Броуновской частицы через некоторые фиксированные промежутки времени. Начало координат поместим в точку, в которой частица находилась при t=0. Обозначим $\overrightarrow{q_i}$ -- вектор , который характеризует перемещение частицы между (i-1) и i наблюдениями. По истечении n наблюдений частица сместится из нулевого положения в точку с радиус-вектором $\overrightarrow{r_n}$. При этом:

    \[\overrightarrow{r_n}=\sum\limits^n_{i=1}{\overrightarrow{q_i}}\left(2\right).\]

    Перемещения частицы происходит по сложной ломаной линии все время наблюдений.

    Найдем средний квадрат удаления частицы от начала после n шагов в большой серии опытов:

    \[\left\langle r^2_n\right\rangle =\left\langle \sum\limits^n_{i,j=1}{q_iq_j}\right\rangle =\sum\limits^n_{i=1}{\left\langle {q_i}^2\right\rangle }+\sum\limits^n_{i\ne j}{\left\langle q_iq_j\right\rangle }\left(3\right)\]

    где $\left\langle q^2_i\right\rangle $- средний квадрат смещения частицы на i- м шаге в серии опытов (он для всех шагов одинаков и равен какой-то положительной величине a2), $\left\langle q_iq_j\right\rangle $- является средней величиной скалярного произведения при i-м шаге на перемещение при j-м шаге в различных опытах. Эти величины независимы друг от друга, одинаково часто встречаются как положительные значения скалярного произведения, так и отрицательные. Поэтому, считаем, что $\left\langle q_iq_j\right\rangle $=0 при$\ i\ne j$. Тогда имеем из (3):

    \[\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle \left(4\right),\]

    где $\triangle t$- промежуток времени между наблюдениями; t=$\triangle tn$ - время, в течение которого средний квадрат удаления частицы стал равен $\left\langle r^2\right\rangle .$ Получаем, что частица удаляется от начала. Существенно то, что средний квадрат удаления растет пропорционально первой степени времени. $\alpha \ $- можно найти экспериментально, а можно теоретически, как будет показано в примере 1.

    Броуновская частица движется не только поступательно, но и вращаясь. Среднее значение угла поворота $\triangle \varphi $ броуновской частицы за время t равно:

    \[{\triangle \varphi }^2=2D_{vr}t(5),\]

    где $D_{vr}$ -- коэффициент вращательной диффузии. Для сферической броуновской частицы радиуса - а $D_{vr}\ $ равен:

    где $\eta $ - коэффициент вязкости среды.

    Броуновское движение ограничивает точность измерительных приборов. Предел точности зеркального гальванометра определяется дрожание зеркальца, подобно броуновской частице, которая подвергается ударам молекул воздуха. Случайное движение электронов вызывает шумы в электрических сетях.

    Пример 1

    Задание: Для того, чтобы математически полно охарактеризовать броуновское движение, надо найти $\alpha $ в формуле $\left\langle r^2_n\right\rangle =\alpha t$. Считать коэффициент вязкости жидкости известным и равным b, температура жидкости T.

    Запишем уравнение движения броуновской частицы в проекции на ось Ox:

    где m -- масса частицы, $F_x$ -- случайная сила, действующая на частицу, $b\dot{x}$- член уравнения, характеризующий силу трения, действующая на частицу в жидкости.

    Аналогичный вид имеют уравнения для величин, относящиеся к другим координатным осям.

    Умножим обе части уравнения (1.1) на x, а члены $\ddot{x}x\ и\ \dot{x}x$ преобразуем:

    \[\ddot{x}x=\ddot{\left(\frac{x^2}{2}\right)}-(\dot{x})^2,\dot{x}x=(\frac{x^2}{2}\)(1.2)\]

    Тогда уравнение (1.1) приведем к виду:

    \[\frac{m}{2}(\ddot{x^2})-m(\dot{x})^2=-\frac{b}{2}\left(\dot{x^2}\right)+F_xx\ (1.3)\]

    Усредним обе части этого уравнения по ансамблю броуновских частиц, учитывая при этом, что средняя от производной по времени равна производной от средней величины, так как это усреднение по ансамблю частиц, и, значит, переставим операцией дифференцирования по времени. В результате усреднения (1.3) получаем:

    \[\frac{m}{2}\left(\left\langle \ddot{x^2}\right\rangle \right)-\left\langle m(\dot{x})^2\right\rangle =-\frac{b}{2}\left(\dot{\left\langle x^2\right\rangle }\right)+\left\langle F_xx\right\rangle \ \left(1.4\right).\]

    Так как отклонения броуновской частицы в любом направлении равновероятны, то:

    \[\left\langle x^2\right\rangle =\left\langle y^2\right\rangle =\left\langle z^2\right\rangle =\frac{\left\langle r^2\right\rangle }{3}\left(1.5\right)\]

    Используем $\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle $, получаем $\left\langle x^2\right\rangle =\frac{\alpha t}{3}$, следовательно: $\dot{\left\langle x^2\right\rangle }=\frac{\alpha }{3}$, $\left\langle \ddot{x^2}\right\rangle =0$

    Из-за случайного характера силы $F_x$ и координаты частицы x и их независимости друг от друга должно выполняться равенство $\left\langle F_xx\right\rangle =0$, тогда (1.5) сводится к равенству:

    \[\left\langle m{\dot{\left(x\right)}}^2\right\rangle =\frac{\alpha b}{6}\left(1.6\right).\]

    По теореме о равномерном распределении энергии по степеням свободы:

    \[\left\langle m{\dot{\left(x\right)}}^2\right\rangle =kT\left(1.7\right).\] \[\frac{\alpha b}{6}=kT\to \alpha =\frac{6kT}{b}.\]

    Таким образом, получим формулу для решения задачи о Броуновском движении:

    \[\left\langle r^2\right\rangle =\frac{6kT}{b}t\]

    Ответ: Формула $\left\langle r^2\right\rangle =\frac{6kT}{b}t$ решает задачу о броуновском движении взвешенных частиц.

    Пример 2

    Задание: Частицы гуммигута сферической формы радиуса r участвуют в броуновском движении в газе. Плотность гуммигута $\rho $. Найти среднеквадратичную скорость частиц гуммигута при температуре T.

    Среднеквадратичная скорость молекул равна:

    \[\left\langle v^2\right\rangle =\sqrt{\frac{3kT}{m_0}}\left(2.1\right)\]

    Броуновская частица находится в равновесии с веществом, в котором она находится, и мы можем рассчитать ее среднеквадратичную скорость, используя формулу для скорости молекул газа, которые, в свою очередь, двигаясь, заставляют перемещаться броуновскую частицу. Для начала найдем массу частицы:

    \[\left\langle v^2\right\rangle =\sqrt{\frac{9kT}{4\pi R^3\rho }}\]

    Ответ: Скорость частицы гуммигута взвешенного в газе можно найти как $\left\langle v^2\right\rangle =\sqrt{\frac{9kT}{4\pi R^3\rho }}$.

    Малые частицы взвеси хаотично движутся под воздействием ударов молекул жидкости.

    Во второй половине ХIХ века в научных кругах разгорелась нешуточная дискуссия о природе атомов. На одной стороне выступали неопровержимые авторитеты, такие как Эрнст Мах (см. Ударные волны), который утверждал, что атомы — суть просто математические функции, удачно описывающие наблюдаемые физические явления и не имеющие под собой реальной физической основы. С другой стороны, ученые новой волны — в частности, Людвиг Больцман (см. Постоянная Больцмана) — настаивали на том, что атомы представляют собой физические реалии. И ни одна из двух сторон не сознавала, что уже за десятки лет до начала их спора получены экспериментальные результаты, раз и навсегда решающие вопрос в пользу существования атомов как физической реальности, — правда, получены они в смежной с физикой дисциплине естествознания ботаником Робертом Броуном.

    Еще летом 1827 года Броун, занимаясь изучением поведения цветочной пыльцы под микроскопом (он изучал водную взвесь пыльцы растения Clarkia pulchella ), вдруг обнаружил, что отдельные споры совершают абсолютно хаотичные импульсные движения. Он доподлинно определил, что эти движения никак не связаны ни с завихрениями и токами воды, ни с ее испарением, после чего, описав характер движения частиц, честно расписался в собственном бессилии объяснить происхождение этого хаотичного движения. Однако, будучи дотошным экспериментатором, Броун установил, что подобное хаотичное движение свойственно любым микроскопическим частицам, — будь то пыльца растений, взвеси минералов или вообще любая измельченная субстанция.

    Лишь в 1905 году не кто иной, как Альберт Эйнштейн, впервые осознал, что это таинственное, на первый взгляд, явление служит наилучшим экспериментальным подтверждением правоты атомной теории строения вещества. Он объяснил его примерно так: взвешенная в воде спора подвергается постоянной «бомбардировке» со стороны хаотично движущихся молекул воды. В среднем, молекулы воздействуют на нее со всех сторон с равной интенсивностью и через равные промежутки времени. Однако, как бы ни мала была спора, в силу чисто случайных отклонений сначала она получает импульс со стороны молекулы, ударившей ее с одной стороны, затем — со стороны молекулы, ударившей ее с другой и т. д. В результате усреднения таких соударений получается, что в какой-то момент частица «дергается» в одну сторону, затем, если с другой стороны ее «толкнуло» больше молекул — в другую и т. д. Использовав законы математической статистики и молекулярно-кинетической теории газов, Эйнштейн вывел уравнение, описывающее зависимость среднеквадратичного смещения броуновской частицы от макроскопических показателей. (Интересный факт: в одном из томов немецкого журнала «Анналы физики» (Annalen der Physik ) за 1905 год были опубликованы три статьи Эйнштейна: статья с теоретическим разъяснением броуновского движения, статья об основах специальной теории относительности и, наконец, статья с описанием теории фотоэлектрического эффекта . Именно за последнюю Альберт Эйнштейн был удостоен Нобелевской премии по физике в 1921 году.)

    В 1908 году французский физик Жан Батист Перрен (Jean-Baptiste Perrin, 1870-1942) провел блестящую серию опытов, подтвердивших правильность эйнштейновского объяснения феномена броуновского движения. Стало окончательно ясно, что наблюдаемое «хаотичное» движение броуновских частиц — следствие межмолекулярных соударений. Поскольку «полезные математические условности» (по Маху) не могут привести к наблюдаемым и совершенно реальным перемещениям физических частиц, стало окончательно ясно, что спор о реальности атомов окончен: они существуют в природе. В качестве «призовой игры» Перрену досталась выведенная Эйнштейном формула, которая позволила французу проанализировать и оценить среднее число атомов и/или молекул, соударяющихся с взвешенной в жидкости частицей за заданный промежуток времени и, через этот показатель, рассчитать молярные числа различных жидкостей. В основе этой идеи лежал тот факт, что в каждый данный момент времени ускорение взвешенной частицы зависит от числа соударений с молекулами среды (см. Законы механики Ньютона), а значит, и от числа молекул в единице объема жидкости. А это не что иное, как число Авогадро (см. Закон Авогадро) — одна из фундаментальных постоянных, определяющих строение нашего мира.







2024 © psynadin.ru.