Оксид хрома 2 какой. Химические свойства



3.2.1; 3.3.1; 3.7.1; 3.8.1

3.2.1, 3.3.1; 3.4; 3.5

5. Ограничение срока действия снято по протоколу N 3-93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6-93)

6. ПЕРЕИЗДАНИЕ (ноябрь 1998 г.) с Изменениями N 1, 2, утвержденными в марте 1984 г., декабре 1988 г. (ИУС 7-84, 3-89)


Настоящий стандарт распространяется на оксид хрома (VI) (хромовый ангидрид), который представляет собой темно-коричнево-красные игольчатые или призматические кристаллы; растворим в воде, гигроскопичен.

Формула: СrO.

Молекулярная масса (по международным атомным массам 1971 г.) - 99,99.



1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Оксид хрома (VI) должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

(Измененная редакция, Изм. N 2).

1.2. По химическим показателям оксид хрома (VI) должен соответствовать нормам, указанным в табл.1.

Таблица 1

Наименование показателя

Чистый для анализа
(ч.д.а.)
ОКП 26 1121 1062 08

Чистый (ч.)
ОКП 26 1121 1061 09

1. Массовая доля оксида хрома (VI) (СrО), %, не менее

2. Массовая доля нерастворимых в воде веществ, %, не более

3. Массовая доля нитратов (NO), %, не более

Не нормируется

4. Массовая доля сульфатов (SO), %, не более

5. Массовая доля хлоридов (Сl), %, не более

6. Массовая доля суммы алюминия, бария, железа и кальция (Аl+Ва+Fe+Са), %, не более

7. Массовая доля суммы калия и натрия (K ± Na), %, не более




2. ПРАВИЛА ПРИЕМКИ

2.1. Правила приемки - по ГОСТ 3885 .

2.2. Определение массовой доли нитратов и суммы алюминия, бария, железа и кальция изготовитель проводит в каждой 10-й партии.

(Введен дополнительно, Изм. N 2).

3. МЕТОДЫ АНАЛИЗА

3.1а. Общие указания по проведению анализа - по ГОСТ 27025 .

При взвешивании применяют лабораторные весы по ГОСТ 24104 * 2-го класса точности с наибольшим пределом взвешивания 200 г и 3-го класса точности с наибольшим пределом взвешивания 500 г или 1 кг или 4-го класса точности с наибольшим пределом взвешивания 200 г.
_______________
* Действует ГОСТ 24104-2001 . - Примечание "КОДЕКС".

Допускается применение импортной посуды по классу точности и реактивов по качеству не ниже отечественных.

3.1. Пробы отбирают по ГОСТ 3885 .

Масса средней пробы должна быть не менее 150 г.

3.2. Определение массовой доли оксида хрома (VI)

3.1а-3.2. (Измененная редакция, Изм. N 2).

3.2.1. Реактивы, растворы и посуда

Вода дистиллированная по ГОСТ 6709 .

Калий йодистый по ГОСТ 4232 , раствор с массовой долей 30%, свежеприготовленный.

Кислота соляная по ГОСТ 3118 .

Крахмал растворимый по ГОСТ 10163 , раствор с массовой долей 0,5%.

ГОСТ 27068 , раствор концентрации (NaSO·5НО)=0,1 моль/дм (0,1 н.); готовят по ГОСТ 25794.2 .

Бюретка вместимостью 50 см с ценой деления 0,1 см.

Колба Кн-1-500-29/32 ТХС по ГОСТ 25336 .

Колба 2-500-2 по ГОСТ 1770 .

Пипетки вместимостью 2, 10 и 25 см.

Секундомер.

Цилиндр 1(3)-100 по ГОСТ 1770 .

(Измененная редакция, Изм. N 1,

3.2.2. Проведение анализа

Около 2,5000 г препарата помещают в мерную колбу, растворяют в небольшом количестве воды, доводят объем раствора водой до метки и тщательно перемешивают.

25 см полученного раствора переносят в коническую колбу, прибавляют 100 см воды, 5 см соляной кислоты, 10 см раствора йодистого калия, перемешивают и оставляют в темноте на 10 мин. Затем смывают пробку водой, прибавляют 100 см воды и титруют выделившийся йод раствором 5-водного серноватистокислого натрия, прибавляя в конце титрования 1 см раствора крахмала, до зеленой окраски.

(Измененная редакция, Изм. N 2).

3.2.3. Обработка результатов

Массовую долю оксида хрома () в процентах вычисляют по формуле

где - объем раствора 5-водного серноватистокислого натрия концентрации точно (NaSO·5НО)=0,1 моль/дм (0,1 н.), израсходованный на титрование, см;

Масса навески, г;

0,003333 - масса оксида хрома (VI), соответствующая 1 см раствора 5-водного серноватистокислого натрия концентрации точно (NaSO·5НО)=0,1 моль/дм (0,1 н.), г.

Одновременно проводят контрольный опыт с теми же количествами растворов йодистого калия и соляной кислоты и при необходимости в результат определения вносят соответствующую поправку.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемого расхождения, равного 0,3%.

Допускаемая абсолютная суммарная погрешность результата анализа ±0,5% при доверительной вероятности =0,95.

(Измененная редакция, Из

м. N 1, 2).

3.3. Определение массовой доли нерастворимых в воде веществ

3.3.1. Реактивы и посуда

Вода дистиллированная по ГОСТ 6709 .

Тигель фильтрующий по ГОСТ 25336 типа ТФ ПОР 10 или ТФ ПОР 16.

Стакан В-1-250 ТХС по ГОСТ 25336 .

Цилиндр 1(3)-250 по ГОСТ 1770 .

3.3.2. Проведение анализа

30,00 г препарата помещают в стакан и растворяют в 100 см воды. Стакан накрывают часовым стеклом и выдерживают в течение 1 ч на водяной бане. Затем раствор фильтруют через фильтрующий тигель, предварительно высушенный до постоянной массы и взвешенный. Результат взвешивания тигля в граммах записывают с точностью до четвертого десятичного знака. Остаток на фильтре промывают 150 см горячей воды и сушат в сушильном шкафу при 105-110 °С до постоянной массы.

Препарат считают соответствующим требованиям настоящего стандарта, если масса остатка после высушивания не будет превышать:

для препарата чистый для анализа - 1 мг,

для препарата чистый - 3 мг.

Допускаемая относительная суммарная погрешность результата анализа для препарата ч.д.а. ±35%, для препарата ч. ±20% при доверительной вероятности =0,95.

3.3.1, 3.3.2. (Измененная редакция, Изм. N 2).

3.4. Определение массовой доли нитратов

Определение проводят по ГОСТ 10671.2 . При этом 1,50 г препарата помещают в колбу Кн-2-100-34(50) ТХС (ГОСТ 25336), прибавляют 100 см воды, перемешивают до растворения, прибавляют 1,5 см концентрированной серной кислоты, осторожно по каплям при перемешивании 2 см этилового спирта ректификованного технического высшего сорта (ГОСТ 18300) и нагревают на кипящей водяной бане в течение 15 мин.

К горячему раствору прибавляют 20 см воды, а затем при перемешивании около 14 см раствора аммиака с массовой долей 10% (ГОСТ 3760) до полного осаждения хрома.

Содержимое колбы медленно нагревают до кипения и кипятят в течение 10 мин, во избежание выбрасывания в колбу помещают кусочки неглазурованного фарфора и стеклянную палочку. Затем жидкость фильтруют через обеззоленный фильтр "синяя лента", применяя лабораторную воронку диаметром 75 мм (ГОСТ 25336) (фильтр предварительно промывают 4-5 раз горячей водой), фильтрат собирают в коническую колбу вместимостью 100 см с меткой на 60 см. Осадок на фильтре промывают три раза горячей водой, собирая промывные воды в ту же колбу. Полученный раствор нагревают до кипения, кипятят в течение 15 мин, охлаждают, доводят объем раствора водой до метки и перемешивают.

Раствор сохраняют для определения хлоридов по п.3.6.

5 см полученного раствора (соответствуют 0,125 г препарата) помещают в коническую колбу вместимостью 50 см, прибавляют 5 см воды и далее определение проводят методом с применением индигокармина.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 5 мин окраска анализируемого раствора не будет слабее окраски раствора, приготовленного одновременно и содержащего в таком же объеме:

для препарата чистый для анализа 0,005 мг NO,

1 см раствора хлористого натрия, 1 см раствора индигокармина и 12 см концентрированной серной

кислоты.

3.5. Определение массовой доли сульфатов

Определение проводят по ГОСТ 10671.5 .

При этом 0,50 г препарата помещают в стакан вместимостью 50 см и растворяют в 5 см воды. Раствор переносят в делительную воронку вместимостью 50 см (ГОСТ 25336), прибавляют 5 см концентрированной соляной кислоты, 10 см трибутилфосфата и взбалтывают.

После расслоения смеси водный слой переносят в другую такую же делительную воронку и при необходимости повторяют обработку водного слоя 5 см трибутилфосфата. Водный слой отделяют в делительную воронку и промывают его 5 см эфира для наркоза. После расслоения водный раствор переносят в выпарительную чашку (ГОСТ 9147), помещают на электрическую водяную баню и выпаривают раствор досуха.

Остаток растворяют в 10 см воды, переносят количественно в коническую колбу вместимостью 50 см (с меткой на 25 см), объем раствора доводят водой до метки, перемешивают и далее определение проводят визуально-нефелометрическим методом.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая опалесценция анализируемого раствора не будет интенсивнее опалесценции раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата чистый для анализа - 0,02 мг SO,

для препарата чистый - 0,05 мг SO,

1 см раствора соляной кислоты с массовой долей 10%, 3 см раствора крахмала и 3 см раствора хлористо

го бария.

3.6. Определение массовой доли хлоридов

Определение проводят по ГОСТ 10671.7 . При этом 40 см раствора, полученного по п.3.4. (соответствуют 1 г препарата), помещают в коническую колбу вместимостью 100 см и, если раствор мутный, прибавляют 0,15 см концентрированной серной кислоты (ГОСТ 4204) в анализируемый раствор и раствор сравнения и далее определение проводят фототурбидиметрическим (в объеме 50 см, измеряя оптическую плотность растворов в кюветах с толщиной поглощающего свет слоя 100 мм) или визуально-нефелометрическим методом.

Препарат считают соответствующим требованиям настоящего стандарта, если масса хлоридов не будет превышать:

для препарата чистый для анализа - 0,01 мг,

для препарата чистый - 0,02 мг.

Одновременно в тех же условиях проводят контрольный опыт определения массовой доли хлоридов в применяемых для анализа количествах спирта и раствора аммиака и при их обнаружении в результаты анализа вносят поправку.

При разногласиях в оценке массовой доли хлоридов определение проводят фототурбидиметрическим методом.

3.4-3.6. (Измененная редакция, Изм. N 1, 2).

3.7. Определение массовой доли алюминия, бария, железа и кальция

3.7.1. Аппаратура, реактивы и растворы

Спектрограф ИСП-30 с трехлинзовой системой освещения щели и трехступенчатым ослабителем.

Генератор дуги переменного тока типа ДГ-1 или ДГ-2.

Выпрямитель кремневый типа ВАЗ-275/100.

Микрофотометр типа МФ-2 или МФ-4.

Печь муфельная.

Секундомер.

Спектропроектор типа ПС-18.

Ступки из органического стекла и агатовые.

Тигель фарфоровый по ГОСТ 9147 .

Весы торсионные ВТ-500 с ценой деления 1 мг или другие с аналогичной точностью.

Угли графитированные для спектрального анализа марки ос.ч. 7-3 (электроды угольные) диаметром 6 мм; верхний электрод заточен на конус, нижний - с цилиндрическим каналом диаметром 3 мм и глубиной 4 мм.

Графит порошковый, ос.ч., по ГОСТ 23463 .

Фотопластинки спектральные типа СП-I светочувствительностью 3-5 ед. для алюминия, бария и кальция и спектральные типа СП-III, светочувствительностью 5-10 ед. для железа.

Аммоний двухромовокислый по ГОСТ 3763 .

Хрома (III) оксид, полученный из оксида хрома (VI) по настоящему стандарту или двухромовокислого аммония, с минимальным содержанием определяемых примесей, определение которых проводят методом добавок в условиях данной методики; при наличии примесей их учитывают при построении градуировочного графика.

Алюминий оксид для спектрального анализа, х.ч.

Барий оксид марки ос.ч. 10-1.

Железо (III) оксид, марки ос.ч. 2-4.

Кальций оксид, марки ос.ч. 6-2.

Аммоний хлористый по ГОСТ 3773 .

Вода дистиллированная по ГОСТ 6709 .

Гидрохинон (парадиоксибензол) по ГОСТ 19627 .

Калий бромистый по ГОСТ 4160 .

Метол (4-метиламинофенол сульфат) по ГОСТ 25664 .

Натрий сульфит 7-водный.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068 .

Натрий углекислый по ГОСТ 83 .

Натрий углекислый 10-водный по ГОСТ 84 .

Проявитель метолгидрохиноновый; готовят следующим образом: раствор А-2 г метола, 10 г гидрохинона и 104 г 7-водного сульфита натрия растворяют в воде, доводят объем раствора водой до 1 дм, перемешивают и, если раствор мутный, его фильтруют; раствор Б-16 г углекислого натрия (или 40 г 10-водного углекислого натрия) и 2 г бромистого калия растворяют в воде, доводят объем раствора водой до 1 дм, перемешивают и, если раствор мутный, его фильтруют, затем растворы А и Б смешивают в равных объемах.

Фиксаж быстродействующий; готовят следующим образом: 500 г 5-водного серноватистокислого натрия и 100 г хлористого аммония растворяют в воде, доводят объем раствора до 2 дм, перемешивают и, если раствор мутный, его фильтруют.

Спирт этиловый ректификованный технический по ГОСТ 18300 высшего сорта.

(Измененная редакция, Изм. N 1, 2).

3.7.2. Подготовка к анализу

3.7.2.1. Приготовление анализируемой пробы

0,200 г препарата помещают в фарфоровый тигель, высушивают на электроплитке и прокаливают в муфельной печи при 900 °С в течение 1 ч.

Полученный оксид хрома (III) растирают в агатовой ступке с порошковым графитом в соотношении 1:2.

3.7.2.2. Приготовление образцов для построения градуировочного графика

Образцы готовят на основе оксида хрома (III), полученного из оксида хрома (VI) с минимальным содержанием определяемых примесей. Для получения основы навеску оксида хрома (VI) помещают в фарфоровый тигель, высушивают на электроплитке и прокаливают в муфельной печи при 900 °С в течение 1 ч (допускается готовить образцы на основе оксида хрома (III), полученного из двухромовокислого аммония).

Головной образец с массовой долей каждой примеси 0,32% готовят растиранием 0,0458 г оксида железа (III), 0,0605 г оксида алюминия, 0,0448 г оксида кальция, 0,0357 г оксида бария и 9,8132 г оксида хрома (III) в ступке из органического стекла или агатовой с 5 см этилового спирта в течение 1 ч, затем подсушивают под инфракрасной лампой или в сушильном шкафу и растирают смесь в течение 30 мин.

Смешиванием соответствующих количеств головного образца или предыдущих с основой получают образцы с меньшей массовой долей примесей, указанных в табл.2.

Таблица 2

Номер образца

Массовая доля каждой примеси (Al, Ba, Fe, Са)
в образцах в пересчете на металл, %


Каждый образец смешивают с порошковым графитом в соотношении 1:2.

3.7.2.1, 3.7.2.2. (Измененная редакция, Изм. N 2).

3.7.3. Проведение анализа

Анализ проводят в дуге постоянного тока при условиях, указанных ниже.

Сила тока, А

Ширина щели, мм

Высота диафрагмы на средней линзе конденсорной системы, мм

Экспозиция, с

Перед съемкой спектрограмм электроды обжигают в дуге постоянного тока при силе тока 10-12 А в течение 30 с.

После обжига электродов в канал нижнего электрода (анод) вносят анализируемую пробу или образец для построения градуировочного графика. Масса навески пробы определяется объемом канала. Зажигают дугу и снимают спектрограмму. Спектры анализируемой пробы и образцов снимают на одной фотопластинке не менее трех раз, ставя каждый раз новую пару электродов. Щель открывают до зажигания дуги.

Фотопластинку со снятыми спектрами проявляют, фиксируют, промывают в проточной воде и высушивают на воздухе.

3.7.4. Обработка результатов

Фотометрирование аналитических спектральных линий определяемых примесей и линий сравнения проводят, пользуясь логарифмической шкалой.

Аналитическая линия
примеси, нм

Линия сравнения

Ва-233,527

Сr-391,182 нм

Для каждой аналитической пары вычисляют разность почернений ()

где - почернение линии примеси;

- почернение линии сравнения или фона.

По трем значениям разности почернений определяют среднее арифметическое значение () для каждого определяемого элемента в анализируемой пробе и образца для построения градуировочного графика.

По значениям образцов для построения градуировочных графиков для каждого определяемого элемента строят градуировочный график, откладывая на оси абсцисс логарифмы концентрации, а на оси ординат - средние арифметические значения разности почернений.

Массовую долю каждой примеси определяют по графику и результат умножают на 0,76.

За результат анализа принимают среднее арифметическое результатов трех параллельных определений, относительное расхождение между наиболее отличающимися значениями которых не превышает допускаемого расхождения, равного 50%.

Допускаемая относительная суммарная погрешность результата анализа ±20% при доверительной вероятности =0,95.

(Измененная редакция, Изм. N 2).

3.8. Определение массовой доли суммы натрия и калия

3.8.1. Приборы, реактивы, растворы и посуда

Фотометр пламенный или спектрофотометр на основе спектрографа ИСП-51 с приставкой ФЭП-1, с соответствующим фотоумножителем, или спектрофотометр "Сатурн". Допускается использование других приборов, обеспечивающих аналогичную чувствительность и точность.

Пропан-бутан.

Воздух сжатый для питания контрольно-измерительных приборов.

Горелка.

Распылитель.

Вода дистиллированная по ГОСТ 6709 , вторично перегнанная в кварцевом дистилляторе, или вода диминерализованная.

Растворы, содержащие Na и K; готовят по ГОСТ 4212 , соответствующим разбавлением и смешением получают раствор с концентрацией Na и K по 0,1 мг/см - раствор А.

Хром (VI) оксид по настоящему стандарту, ч.д.а., с установленным методом добавок содержанием Na и K (раствор с массовой долей 10%) - раствор Б.

3.8.2. Подготовка к анализу

3.8.2.1. Приготовление анализируемых растворов

1,00 г препарата растворяют в воде, количественно переносят в мерную колбу, доводят объем раствора до метки и тщательно перемешивают.

3.8.2.2. Приготовление растворов сравнения

В шесть мерных колб вводят по 10 см раствора Б и объемы раствора А, указанные в табл.3.

Таблица 3

Номер раствора сравнения

Объем раствора А, см

Масса каждого элемента (K, Na), введенного в 100 см раствора сравнения, мг

Массовая доля каждой примеси (K, Na) в пересчете на препарат, %


Растворы перемешивают, доводят объем растворов до метки и снова перемешивают.

3.8.2.1, 3.8.2.2. (Измененная редакция, Изм. N 2).

3.8.3. Проведение анализа

Для анализа берут не менее двух навесок препарата.

Сравнивают интенсивность излучения резонансных линий натрия 589,0-589,6 нм и калия 766,5 нм в спектре пламени газ-воздух при введении в него анализируемых растворов и растворов сравнения.

После подготовки прибора к анализу проводят фотометрирование анализируемых растворов и растворов сравнения в порядке возрастания массовой доли примесей. Затем проводят фотометрирование в обратной последовательности, начиная с максимального содержания примесей, и вычисляют среднее арифметическое значение показаний для каждого раствора, учитывая в качестве поправки отсчет, полученный при фотометрировании первого раствора сравнения. После каждого замера распыляют воду.

3.8.4. Обработка результатов

По полученным данным для растворов сравнения строят градуировочный график, откладывая значения интенсивности излучения на оси ординат, массовую долю примеси натрия и калия в пересчете на препарат на оси абсцисс.

Массовую долю натрия и калия находят по графику.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемого расхождения, равного 30%.

Допускаемая относительная суммарная погрешность результата анализа ±15% при доверительной вероятности =0,95.

(Измененная редакция, Изм. N 2).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Препарат упаковывают и маркируют в соответствии с ГОСТ 3885 .

Вид и тип тары: 2-4, 2-5, 2-6, 11-6.

Группа фасовки: V, VI, VII.

Продукт, применяемый в качестве технологического сырья, расфасовывают в мешки-вкладыши из тонкой полимерной пленки, вкладываемые в металлические барабаны типа БТПБ-25, БТПБ-50 (ГОСТ 5044) массой нетто до 70 кг.

На тару наносится знак опасности по ГОСТ 19433 (класс 5, подкласс 5.1, классификационный шифр 5152).

(Измененная редакция, Изм. N 2).

4.2. Препарат перевозят всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

4.3. Препарат хранят в упаковке изготовителя в крытых складских помещениях.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1. Изготовитель гарантирует соответствие оксида хрома (VI) требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

5.2. Гарантийный срок хранения - 3 года со дня изготовления.

Разд. 5. (Измененная редакция, Изм. N 2).

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1. Оксид хрома (VI) ядовит. Предельно допустимая концентрация в воздухе рабочей зоны производственных помещений 0,01 мг/м (1-й класс опасности). При увеличении концентрации может вызвать острые и хронические отравления с поражением жизненно важных органов и систем.

(Измененная редакция, Изм. N 2).

6.2. При работе с препаратом необходимо пользоваться противопылевыми респираторами, резиновыми перчатками и защитными очками, а также соблюдать правила личной гигиены; не допускать попадания препарата внутрь организма.

6.3. Должна быть обеспечена максимальная герметизация технологического оборудования.

6.4. Помещения, в которых проводятся работы с препаратом, должны быть оборудованы общей приточно-вытяжной вентиляцией, а места наибольшего пыления - укрытиями с местной вытяжной вентиляцией. Анализ препарата следует проводить в вытяжном шкафу лаборатории.

(Измененная редакция, Изм. N 2).

6.5. При проведении анализа препарата с использованием горючих газов следует соблюдать правила противопожарной безопасности.



Текст документа сверен по:
официальное издание
М.: ИПК Издательство стандартов, 1999

Хром образует три оксида: CrO, Cr 2 O 3 , CrO 3 .

Оксид хрома (II) CrO - пирофорный черный порошок. Обла­дает основными свойствами.

В окислительно-восстановительных реакциях ведет себя как восстановитель:

CrO получают разложением в вакууме карбонила хрома Cr(СО) 6 при 300°С.

Оксид хрома (III) Cr 2 O 3 - тугоплавкий порошок зеленого цвета. По твердости близок к корунду, поэтому его вводят в состав полирующих средств. Образуется при взаимодействии Cr и O 2 при высокой температуре. В лаборатории оксид хрома (III) можно получить нагреванием дихромата аммония:

(N -3 H 4) 2 Cr +6 2 O 7 =Cr +3 2 O 3 +N 0 2 ­+4Н 2 О

Оксид хрома (III) обладает амфотерными свойствами. При взаимодействии с кислотами образуются соли хрома (III): Cr 2 O 3 +3H 2 SO 4 =Cr 2 (SO 4) 3 +3Н 2 О

При взаимодействии с щелочами в расплаве образуются со­единения хрома (III) - хромиты (в отсутствие кислорода): Cr 2 O 3 +2NaOH=2NaCrO 2 +Н 2 О

В воде оксид хрома (III) нерастворим.

В окислительно-восстановительных реакциях оксид хрома (III) ведет себя как восстановитель:

Оксид хрома (VI) CrO 3 - хромовый ангидрид, представляет собой темно-красные игольчатые кристаллы. При нагревании около 200°С разлагается:

4CrO 3 =2Cr 2 O 3 +3O 2 ­

Легко растворяется в воде, имея кислотный характер, образу­ет хромовые кислоты. С избытком воды образуется хромовая кис­лота H 2 CrO 4:

CrO 3 +Н 2 O=Н 2 CrO 4

При большой концентрации CrO 3 образуется дихромовая кис­лота Н 2 Cr 2 О 7:

2CrO 3 +Н 2 О=Н 2 Cr 2 О 7

которая при разбавлении переходит в хромовую кислоту:

Н 2 Cr 2 О 7 +Н 2 О=2Н 2 CrO 4

Хромовые кислоты существуют только в водном растворе, ни одна из этих кислот в свободном состоянии не выделена. Однако соли их весьма устойчивы.

Оксид хрома (VI) является сильным окислителем:

3S+4CrO 3 =3SO 2 ­+2Cr 2 O 3

Окисляет иод, серу, фосфор, уголь, превращаясь в Cr 2 O 3 . Получают CrO 3 действием избытка концентрированной сер­ной кислоты на насыщенный водный раствор дихромата натрия: Na 2 Cr 2 O 7 +2H 2 SO 4 =2CrO 3 +2NaHSO 4 +H 2 O Следует отметить сильную токсичность оксида хрома (VI).

Хром и его соединения активно используются в промышленном производстве, в частности, в металлургии, химической и огнеупорной промышленности.

Хром Cr - химический элемент VI группы периодической системы Менделеева, атомный номер 24, атомная масса 51,996, радиус атома 0,0125, радиусы ионов Cr2+ - 0,0084; Cr3+ - 0,0064; Cr4+ - 6,0056.

Хром проявляет степени окисления +2, +3, +6, соответственно имеет валентности II, III, VI.

Хром представляет собой твердый, пластичный, довольно тяжелый, ковкий металл серо-стального цвета.

Кипит при 2469 0 С, плавится при 1878± 22 0 С. Обладает всеми характерными свойствами металлов - хорошо проводит тепло, почти не оказывает сопротивления электрическому току, имеет блеск, присущий большинству металлов. И в то же время, устойчив к коррозии на воздухе и в воде.

Примеси кислорода, азота и углерода, даже в самых малых количествах, резко изменяют физические свойства хрома, например, делая его очень хрупким. Но, к сожалению, получить хром без этих примесей очень трудно.

Структура кристаллической решетки - объемноцентрированная кубическая. Особенностью хрома является резкое изменение его физических свойств при температуре около 37°С.

6. Виды соединений хрома.

Оксид хрома (II) CrO (основной) - сильный восстановитель, чрезвычайно неустойчив в присутствии влаги и кислорода. Практического значения не имеет.

Оксид хрома (III) Cr2O3 (амфотерный) устойчив на воздухе и в растворах.

Cr2O3 + H2SO4 = Cr2(SO4)3 + H2O

Cr2O3 + 2NaOH = Na2CrO4 + H2O

Образуется при нагревании некоторых соединений хрома (VI), например:

4CrO3 2Cr2O3 + 3О2

(NH4)2Cr2O7 Cr2O3 + N2 + 4H2O

4Cr + 3O2 2Cr2O3

Оксид хрома (III) используется для восстановления металлического хрома невысокой чистоты с помощью алюминия (алюминотермия) или кремния (силикотермия):

Cr2O3 +2Al = Al2O3 +2Cr

2Cr2O3 + 3Si = 3SiO3 + 4Cr

Оксид хрома (VI) CrO3 (кислотный) - темно малиновые игольчатые кристаллы.

Получают действием избытка концентрированной H2SO4 на насыщенный водный раствор бихромата калия:

K2Cr2O7 + 2H2SO4 = 2CrO3 + 2KHSO4 + H2O

Оксид хрома (VI) - сильный окислитель, одно из самых токсичных соединений хрома.

При растворении CrO3 в воде образуется хромовая кислота H2CrO4

CrO3 + H2O = H2CrO4

Кислотный оксид хрома, реагируя со щелочами, образует желтые хроматы CrO42

CrO3 + 2KOH = K2CrO4 + H2O

2.Гидроксиды

Гидроксид хрома (III) обладает амфотерными свойствами, растворяясь как в

кислотах (ведет себя как основание),так и в щелочах (ведет себя как кислота):

2Cr(OH)3 + 3H2SO4 = Cr2(SO4)3 + 6H2O

Cr(OH)3 + KOH = K


При прокаливании гидроксида хрома (III) образуется оксид хрома (III) Cr2O3.

Нерастворим в воде.

2Cr(OH)3 = Cr2O3 + 3H2O

3.Кислоты

Кислоты хрома, отвечающие его степени окисления +6 и различающиеся соотношением числа молекул CrO3 и H2O, существуют только в виде растворов. При растворении кислотного оксида CrO3, образуется монохромовая кислота (просто хромовая) H2CrO4.

CrO3 + H2O = H2CrO4

Подкисление раствора или увеличение в нем CrO3 приводит к кислотам общей формулы nCrO3 H2O

при n=2, 3, 4 это, соответственно, ди, три, тетрохромовые кислоты.

Самая сильная из них - дихромовая, то есть H2Cr2O7. Хромовые кислоты и их соли- сильные окислители и ядовиты.

Различают два вида солей: хромиты и хроматы.

Хромитами с общей формулой RCrO2 называются соли хромистой кислоты HCrO2.

Cr(OH)3 + NaOH = NaCrO2 + 2H2O

Хромиты обладают различной окраской - от темно коричневой до совершенно черной и обычно встречаются в виде сплошных массивов. Хромит мягче многих других минералов, температура плавления хромита зависит от его состава 1545-1730 0 С.

Хромит имеет металлический блеск и почти нерастворим в кислотах.

Хроматы - соли хромовых кислот.

Соли монохромовой кислоты H2CrO4 называют монохроматами (хроматы) R2CrO4, соли дихромовой кислоты H2Cr2O7 дихроматы (бихроматы) - R2Cr2O7. Монохроматы обычно окрашены в желтый цвет. Они устойчивы только в щелочной среде, а при подкислении превращаются в оранжево-красные бихроматы:

2Na2CrO4 + H2SO4 = Na2Cr2O7 + Na2SO4 + H2O

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром- твёрдый металл голубовато-белого цвета.

Химические свойства хрома

При обычных условиях хром реагирует только со фтором. При высоких температурах (выше 600°C) взаимодействует с кислородом, галогенами, азотом, кремнием, бором, серой, фосфором.

4Cr + 3O 2 – t° →2Cr 2 O 3

2Cr + 3Cl 2 – t° → 2CrCl 3

2Cr + N 2 – t° → 2CrN

2Cr + 3S – t° → Cr 2 S 3

В раскалённом состоянии реагирует с парами воды:

2Cr + 3H 2 O → Cr 2 O 3 + 3H 2

Хром растворяется в разбавленных сильных кислотах (HCl, H 2 SO 4)

В отсутствии воздуха образуются соли Cr 2+ , а на воздухе – соли Cr 3+ .

Cr + 2HCl → CrCl 2 + H 2 ­

2Cr + 6HCl + O 2 → 2CrCl 3 + 2H 2 O + H 2 ­

Наличие защитной окисной плёнки на поверхности металла объясняет его пассив-ность по отношению к концентрированным растворам кислот – окислителей.

Соединения хрома

Оксид хрома (II) и гидроксид хрома (II) имеют основной характер.

Cr(OH) 2 + 2HCl → CrCl 2 + 2H 2 O

Соединения хрома (II) — сильные восстановители; переходят в соединения хрома (III) под действием кислорода воздуха.

2CrCl 2 + 2HCl → 2CrCl 3 + H 2 ­

4Cr(OH) 2 + O 2 + 2H 2 O → 4Cr(OH) 3

Оксид хрома (III) Cr 2 O 3 – зелёный, нерастворимый в воде порошок. Может быть получен при прокаливании гидроксида хрома (III) или дихроматов калия и аммония:

2Cr(OH) 3 – t° → Cr 2 O 3 + 3H 2 O

4K 2 Cr 2 O 7 – t° → 2Cr 2 O 3 + 4K 2 CrO 4 + 3O 2 ­

(NH 4) 2 Cr 2 O 7 – t° → Cr 2 O 3 + N 2 ­+ 4H 2 O­ (реакция «вулканчик»)

Амфотерный оксид. При сплавлении Cr 2 O 3 со щелочами, содой и кислыми солями получаются соединения хрома со степенью окисления (+3):

Cr 2 O 3 + 2NaOH → 2NaCrO 2 + H 2 O

Cr 2 O 3 + Na 2 CO 3 → 2NaCrO 2 + CO 2 ­

При сплавлении со смесью щёлочи и окислителя получают соединения хрома в степени окисления (+6):

Cr 2 O 3 + 4KOH + KClO 3 → 2K 2 CrO 4 + KCl + 2H 2 O

Гидроксид хрома (III) С r (ОН) 3 . Амфотерный гидроксид. Серо-зеленый, разлагается при нагревании, теряя воду и образуя зеленый метагидроксид СrО(ОН). Не растворяется в воде. Из раствора осаждается в виде серо-голубого и голубовато-зеленого гидрата. Реагирует с кислотами и щелочами, не взаимодействует с гидратом аммиака.

Обладает амфотерными свойствами — растворяется как в кислотах, так и в щелочах:

2Cr(OH) 3 + 3H 2 SO 4 → Cr 2 (SO 4) 3 + 6H 2 O Сr(ОН) 3 + ЗН + = Сr 3+ + 3H 2 O

Cr(OH) 3 + KOH → K , Сr(ОН) 3 + ЗОН — (конц.) = [Сr(ОН) 6 ] 3-

Cr(OH) 3 + KOH → KCrO 2 +2H 2 O Сr(ОН) 3 + МОН = МСrO 2(зел.) + 2Н 2 O (300-400 °С, М = Li, Na)

Сr(ОН) 3 →(120 o C H 2 O ) СrO(ОН) →(430-1000 0 С – H 2 O ) Cr 2 O 3

2Сr(ОН) 3 + 4NаОН (конц.) + ЗН 2 O 2(конц.) =2Na 2 СrO 4 + 8Н 2 0

Получение : осаждение гидратом аммиака из раствора солей хрома(Ш):

Сr 3+ + 3(NH 3 Н 2 O) = С r (ОН) 3 ↓ + ЗNН 4+

Cr 2 (SO 4) 3 + 6NaOH → 2Cr(OH) 3 ↓+ 3Na 2 SO 4 (в избытке щелочи — осадок растворяется)

Соли хрома (III) имеют фиолетовую или тёмно-зелёную окраску. По химическим свойствам напоминают бесцветные соли алюминия.

Соединения Cr (III) могут проявлять и окислительные, и восстановительные свойства:

Zn + 2Cr +3 Cl 3 → 2Cr +2 Cl 2 + ZnCl 2

2Cr +3 Cl 3 + 16NaOH + 3Br 2 → 6NaBr + 6NaCl + 8H 2 O + 2Na 2 Cr +6 O 4

Соединения шестивалентного хрома

Оксид хрома (VI) CrO 3 — ярко-красные кристаллы, растворимые в воде.

Получают из хромата (или дихромата) калия и H 2 SO 4 (конц.).

K 2 CrO 4 + H 2 SO 4 → CrO 3 + K 2 SO 4 + H 2 O

K 2 Cr 2 O 7 + H 2 SO 4 → 2CrO 3 + K 2 SO 4 + H 2 O

CrO 3 — кислотный оксид, со щелочами образует жёлтые хроматы CrO 4 2- :

CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

В кислой среде хроматы превращаются в оранжевые дихроматы Cr 2 O 7 2- :

2K 2 CrO 4 + H 2 SO 4 → K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O

В щелочной среде эта реакция протекает в обратном направлении:

K 2 Cr 2 O 7 + 2KOH → 2K 2 CrO 4 + H 2 O

Дихромат калия – окислитель в кислой среде:

К 2 Сr 2 O 7 + 4H 2 SO 4 + 3Na 2 SO 3 = Cr 2 (SO 4) 3 + 3Na 2 SO 4 + K 2 SO 4 + 4H 2 O

K 2 Cr 2 O 7 + 4H 2 SO 4 + 3NaNO 2 = Cr 2 (SO 4) 3 + 3NaNO 3 + K 2 SO 4 + 4H 2 O

K 2 Cr 2 O 7 + 7H 2 SO 4 + 6KI = Cr 2 (SO 4) 3 + 3I 2 + 4K 2 SO 4 + 7H 2 O

K 2 Cr 2 O 7 + 7H 2 SO 4 + 6FeSO 4 = Cr 2 (SO 4) 3 + 3Fe 2 (SO 4) 3 + K 2 SO 4 + 7H 2 O

Хромат калия К 2 Cr О 4 . Оксосоль. Желтый, негигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде (желтая окраска раствора отвечает иону СrO 4 2-), незначительно гидролизуется по аниону. В кислотной среде переходит в К 2 Cr 2 O 7 . Окислитель (более слабый, чем К 2 Cr 2 O 7). Вступает в реакции ионного обмена.

Качественная реакция на ион CrO 4 2- — выпадение желтого осадка хромата бария, разлагающегося в сильнокислотной среде. Применяется как протрава при крашении тканей, дубитель кож, селективный окислитель, реактив в аналитической химии.

Уравнения важнейших реакций:

2K 2 CrO 4 +H 2 SO 4(30%)= K 2 Cr 2 O 7 +K 2 SO 4 +H 2 O

2K 2 CrO 4(т) +16HCl (кон ц., гор.) =2CrCl 3 +3Cl 2 +8H 2 O+4KCl

2K 2 CrO 4 +2H 2 O+3H 2 S=2Cr(OH) 3 ↓+3S↓+4KOH

2K 2 CrO 4 +8H 2 O+3K 2 S=2K[Сr(ОН) 6 ]+3S↓+4KOH

2K 2 CrO 4 +2AgNO 3 =KNO 3 +Ag 2 CrO 4(красн.) ↓

Качественная реакция:

К 2 СгO 4 + ВаСl 2 = 2КСl + ВаCrO 4 ↓

2ВаСrO 4 (т)+ 2НСl (разб.) = ВаСr 2 O 7(p) + ВаС1 2 + Н 2 O

Получение : спекание хромита с поташом на воздухе:

4(Сr 2 Fe ‖‖)O 4 + 8К 2 CO 3 + 7O 2 = 8К 2 СrO 4 + 2Fе 2 O 3 + 8СO 2 (1000 °С)

Дихромат калия K 2 Cr 2 O 7 . Оксосоль. Техническое название хромпик . Оранжево-красный, негигроскопичный. Плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (оранжевая окраска раствора отвечает иону Сr 2 O 7 2-). В щелочной среде образует К 2 CrO 4 . Типичный окислитель в растворе и при сплавлении. Вступает в реакции ионного обмена.

Качественные реакции — синее окрашивание эфирного раствора в присутствии Н 2 O 2 , синее окрашивание водного раствора при действии атомарного водорода.

Применяется как дубитель кож, протрава при крашении тканей, компонент пиротехнических составов, реагент в аналитической химии, ингибитор коррозии металлов, в смеси с Н 2 SO 4 (конц.) — для мытья химической посуды.

Уравнения важнейших реакций:

4К 2 Cr 2 O 7 =4K 2 CrO 4 +2Cr 2 O 3 +3O 2 (500-600 o C)

K 2 Cr 2 O 7 (т) +14HCl (кон ц) =2CrCl 3 +3Cl 2 +7H 2 O+2KCl (кипячение)

K 2 Cr 2 O 7 (т) +2H 2 SO 4(96%) ⇌2KHSO 4 +2CrO 3 +H 2 O (“хромовая смесь”)

K 2 Cr 2 O 7 +KOH (конц) =H 2 O+2K 2 CrO 4

Cr 2 O 7 2- +14H + +6I — =2Cr 3+ +3I 2 ↓+7H 2 O

Cr 2 O 7 2- +2H + +3SO 2(г) =2Cr 3+ +3SO 4 2- +H 2 O

Cr 2 O 7 2- +H 2 O +3H 2 S (г) =3S↓+2OH — +2Cr 2 (OH) 3 ↓

Cr 2 O 7 2- (конц) +2Ag + (разб.) =Ag 2 Cr 2 O 7 (т. красный) ↓

Cr 2 O 7 2- (разб.) +H 2 O +Pb 2+ =2H + + 2PbCrO 4 (красный) ↓

K 2 Cr 2 O 7(т) +6HCl+8H 0 (Zn)=2CrCl 2(син) +7H 2 O+2KCl

Получение: обработка К 2 СrO 4 серной кислотой:

2К 2 СrO 4 + Н 2 SO 4 (30%) = К 2 Cr 2 O 7 + К 2 SO 4 + Н 2 O

] молекуле CrO приписаны многочисленные R-оттененные полосы, наблюдавшиеся в диапазоне 4800 – 7100Å в спектре испускания электрической дуги на воздухе при помещении в нее металлического хрома или соли Cr 2 Cl 6 . Колебательный анализ показал, что полосы принадлежат одной системе (электронному переходу) с 0-0 полосой около 6000Å, определены колебательные константы верхнего и нижнего электронных состояний. К «оранжевой» системе отнесены также полосы в интервале 7100 – 8400Å, измеренные в [ 32FER ]. В работе [ 55NIN ] проведен частичный анализ вращательной структуры полос, на основании которого установлен тип электронного перехода 5 Π - 5 Π. В справочнике [ 84ХЬЮ/ГЕР ] нижнее состояние системы обозначено как основное состояние молекулы X 5 Π.

Полный вращательный анализ пяти полос системы (2-0, 1-0, 0-0, 0-1 и 0-2) выполнен в работе [ 80HOC/MER ]. Полосы зарегистрированы с высоким разрешением в спектре испускания разряда и в спектре лазерного возбуждения молекул CrO в потоке инертного газа-носителя. Нижнее состояние системы подтверждено как основное состояние молекулы (спектр лазерного возбуждения получен при температуре газа-носителя чуть ниже комнатной).

Еще одна более слабая система полос CrO обнаружена в спектре испускания разряда в ближней инфракрасной области [ 84CHE/ZYR ]. Спектр получен с помощью Фурье-спектрометра. Вращательный анализ 0-0 полосы, расположенной около 8000 см ‑1 , показал, что система принадлежит переходу 5 Σ - X 5 Π.

Третья система полос CrO, с центром около 11800 см ‑1 , обнаружена в спектре хемилюминесценции при реакции атомов хрома с озоном [ 89DEV/GOL ]. Полосы этой системы отмечены также в атласе [ 57GAT/JUN ]. В [ 93BAR/HAJ ] полосы 0-0 и 1-1 получены с высоким разрешением в спектре лазерного возбуждения. Проведен вращательный анализ, который показал, что система образована переходом 5 Δ - X 5 Π.

В спектре хемилюминесценции [ 89DEV/GOL ] обнаружена система полос в районе 4510Å (ν 00 = 22163 см ‑1), проведен колебательный анализ. Система принадлежит, вероятно, электронному переходу с переносом заряда, т.к. колебательный интервал в верхнем состоянии намного меньше колебательных интервалов в других состояниях CrO. Предварительно электронный переход обозначен как C 5 Π - X 5 Π.

Фотоэлектронные спектры аниона CrO - получены в работах [ 96WEN/GUN ] и [ 2001GUT/JEN ]. Наиболее полная и надежная интерпретация спектров, основанная на MRCI расчете аниона и молекулы, представлена в работе [ 2002BAU/GUT ]. Согласно расчету анион имеет основное состояние X 4 Π и первое возбужденное состояние 6 Σ + . В спектрах наблюдаются одноэлектронные переходы из этих состояний в основное и 5 возбужденных состояний нейтральной молекулы: X 5 Π ← 6 Σ + (1.12 эВ), X 5 Π ← X 4 Π (1.22 эВ), 3 Σ – ← X 4 Π (1.82 эВ), 5 Σ + ← 6 Σ + (2.13 эВ), 3 Π ← X 4 Π (2.28 эВ), 5 Δ ← 6 Σ + (2.64 эВ), 3 Φ ← X 4 Π (3.03 эВ). Энергии квинтетных состояний CrO согласуются с данными оптических спектров. Триплетные состояния 3 Σ – (0.6 эВ), 3 Π (1.06 эВ) и 3 Φ (1.81 эВ) в оптических спектрах не наблюдались.

Квантово-механические расчеты CrO выполнены в работах [ 82GRO/WAH, 84HUZ/KLO, 85BAU/NEL, 85NEL/BAU, 87AND/GRI, 87DOL/WED, 88JAS/STE, 89STE/NAC, 95BAU/MAI, 96BAK/STI, 2000BRI/ROT, 2000GUT/RAO, 2001GUT/JEN, 2002BAU/GUT, 2003GUT/AND, 2003DAI/DEN, 2006FUR/PER, 2007JEN/ROO, 2007WAG/MIT ]. В расчете [ 85BAU/NEL ] показано и подтверждено в последующих расчетах, что основным состоянием молекулы является 5 Π. Энергии возбужденных состояний приведены прямо или косвенно (в виде энергии диссоциации или сродства к электрону) в работах [ 85BAU/NEL, 85NEL/BAU, 96BAK/STI, 2000BRI/ROT, 2001GUT/JEN, 2002BAU/GUT, 2003DAI/DEN ].

В расчет термодинамических функций были включены: а) нижняя компонента Ω = -1 состояния X 5 Π, как основное состояние; б) остальные Ω-компоненты X 5 Π, как отдельные возбужденные состояния; в) возбужденные состояния, энергии которых определены экспериментально или рассчитаны; г) синтетические состояния, которые учитывают все прочие состояния молекулы с оцененной энергией до 40000 см -1 .

Равновесные константы для состояния X 5 Π CrO получены в [ 80HOC/MER ]. Они приведены в таблице Cr.Д1 , как константы для нижней компоненты X 5 Π –1 , хотя относятся ко всему состоянию в целом. Различия в значениях ω e для компонент состояния X 5 Π незначительны и учтены в погрешности ± 1 см -1 .

Энергии возбужденных состояний приведены согласно спектроскопическим данным [ 84CHE/ZYR ] (5 Π 0 , 5 Π 1 , 5 Π 2 , 5 Π 3 , A 5 Σ +), [ 93BAR/HAJ ] ( 5 Δ), [ 80HOC/MER ] (B 5 Π), [ 89DEV/GOL ] (C 5 Π); интерпретации фотоэлектронных спектров [ 2002BAU/GUT ] (3 Σ - , 3 Π, 3 Φ); согласно расчетам [ 2002BAU/GUT ] (5 Σ – , 3 Δ) и [ 2003DAI/DEN ] (3 Σ).

Колебательные и вращательные константы возбужденных состояний CrO в расчетах термодинамических функций не использовались и приведены в таблице Cr.Д1 для справки. Для состояний A 6 Σ + , 5 Δ, B 5 Π, C (5 Π) приведены спектроскопические константы по данным работ [ 84CHE/ZYR, 93BAR/HAJ, 80HOC/MER, 89DEV/GOL ], соответственно. Для состояний 3 Σ - , 3 Π, 3 Φ приведены значения ω e , полученные из фотоэлектронного спектра аниона в работе [ 96WEN/GUN ]. Значения ω e для состояний 5 Σ - , 3 Δ и r e для 3 Σ - , 3 Π, 3 Φ, 5 Σ - , 3 Δ приведены согласно результатам MRCI расчета [ 2002BAU/GUT ].

Статистические веса синтетических состояний оценены с использованием ионной модели. Наблюдавшиеся и рассчитанные состояния CrO отнесены к трем ионным конфигурациям: Cr 2+ (3d 4)O 2- , Cr 2+ (3d 3 4s)O 2- и Cr + (3d 5)O - . Энергии других состояний этих конфигураций оценены с использованием данных [ 71MOO ] о положении термов однозарядного и двухзарядного ионов хрома. Использованы также оценки [ 2001GUT/JEN ] для энергий состояний 7 Π, 7 Σ + конфигурации Cr + (3d 5)O - .

Термодинамические функции CrO(г) были вычислены по уравнениям (1.3) - (1.6) , (1.9) , (1.10) , (1.93) - (1.95) . Значения Q вн и ее производных рассчитывались по уравнениям (1.90) - (1.92) с учетом девятнадцати возбужденных состояний в предположении, что Q кол.вр (i ) = (p i /p X)Q кол.вр (X ) . Колебательно-вращательная статистическая сумма состояния X 5 Π -1 и ее производные вычислялись по уравнениям (1.70) - (1.75) непосредственным суммированием по колебательным уровням и интегрированием по вращательным уровням энергии с помощью уравнения типа (1.82) . В расчетах учитывались все уровни энергии со значениями J < J max,v , где J max,v находилось из условий (1.81) . Колебательно-вращательные уровни состояния X 5 Π -1 вычислялись по уравнениям (1.65) , значения коэффициентов Y kl в этих уравнениях были рассчитаны по соотношениям (1.66) для изотопической модификации, соответствующей естественной смеси изотопов хрома и кислорода из молекулярных постоянных 52 Cr 16 O, приведенных в таблице Cr.Д1 . Значения коэффициентов Y kl , а также величины v max и J lim приведены в табл.Cr.Д2 .

При комнатной температуре получены следующие значения:

C p o (298.15 К) = 32.645 ± 0.26 Дж× К ‑1 × моль ‑1

S o (298.15 К) = 238.481 ± 0.023 Дж× К ‑1 × моль ‑1

H o (298.15 К)-H o (0) = 9.850 ± 0.004 кДж× моль ‑1

Основной вклад в погрешность рассчитанных термодинамических функций CrO(г) при температурах 298.15 и 1000 K дает метод расчета. При 3000 и 6000 K погрешность обусловлена главным образом неопределенностью энергий возбужденных электронных состояний. Погрешности в значениях Φº(T ) при T = 298.15, 1000, 3000 и 6000 K оцениваются в 0.02, 0.04, 0.2 и 0.4 Дж× K ‑1 × моль ‑1 , соответственно.

Ранее термодинамические функции CrO(г) вычислялись для таблиц JANAF [ 85CHA/DAV ], Шнейдером [ 74SCH ] (T = 1000 – 9000 K), Брюэром и Розенблатом [ 69BRE/ROS ] (значения Φº(T ) для T ≤ 3000 K). Расхождения таблиц JANAF и табл. CrO при низких температурах обусловлены тем, что авторы [ 85CHA/DAV ] не могли учесть мультиплетное расщепление состояния X 5 Π; расхождение в значениях Φº(298.15) составляет 4.2 Дж× K ‑1 × моль ‑1 . В области 1000 – 3000 K расхождения в значениях Φº(T ) не превышают 1.5 Дж× K ‑1 × моль ‑1 , но к 6000 K достигают 3.1 Дж× K ‑1 × моль ‑1 из-за того, что в [







2024 © psynadin.ru.