Функции определение и график функции периодичность функции. Как определить периодичность функции


По школьным урокам математики каждый помнит график синуса, равномерными волнами уходящий вдаль. Аналогичным свойством - повторяться через определенный промежуток - обладают и многие другие функции. Они называются периодическими. Периодичность - очень важное свойство функции, часто встречающееся в различных задачах. Поэтому полезно уметь определять, является ли функция периодической.

Инструкция

  • Если F(x) - функция аргумента x, то она называется периодической, если есть такое число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.Обычно математика интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.
  • Классический пример периодических функций - тригонометрические: синус, косинус и тангенс. Их период одинаков и равен 2π, то есть sin(x) = sin(x + 2π) = sin(x + 4π) и так далее. Однако, разумеется, тригонометрические функции - не единственные периодические.
  • Относительно простых, базовых функций единственный способ установить их периодичность или непериодичность - вычисления. Но для сложных функций уже есть несколько простых правил.
  • Если F(x) - периодическая функция с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) - тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла наклона касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C - нет.
  • Если F(x) - периодическая функция с периодом T, то G(x) = a*F(kx + b), где a, b, и k - константы и k не равно нулю - тоже периодическая функция, и ее период равен T/k. Например sin(2x) - периодическая функция, и ее период равен π. Наглядно это можно представить так: умножая x на какое-нибудь число, вы как бы сжимаете график функции по горизонтали именно в столько раз
  • Если F1(x) и F2(x) - периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 - рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй - 15, то период их суммы будет равен НОК (12, 15) = 60.Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.
  • Однако если соотношение периодов иррационально, то суммарная функция не будет периодической вовсе. Например, пусть F1(x) = x mod 2 (остаток от деления x на 2), а F2(x) = sin(x). T1 здесь будет равен 2, а T2 равен 2π. Соотношение периодов равняется π - иррациональному числу. Следовательно, функция sin(x) + x mod 2 не является периодической.

По школьным урокам математики каждый помнит график синуса, равномерными волнами уходящий вдаль. Аналогичным свойством - повторяться через определенный промежуток - обладают и многие другие функции. Они называются периодическими. Периодичность - очень важное свойство функции, часто встречающееся в различных задачах. Поэтому полезно уметь определять, является ли функция периодической.

Инструкция

Если F(x) - функция аргумента x, то она называется периодической, если есть такое число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.

Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.

Обычно математика интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.

Классический пример периодических функций - тригонометрические: синус, косинус и тангенс. Их период одинаков и равен 2?, то есть sin(x) = sin(x + 2?) = sin(x + 4?) и так далее. Однако, разумеется, тригонометрические функции - не единственные периодические.

Относительно простых, базовых функций единственный способ установить их периодичность или непериодичность - вычисления. Но для сложных функций уже есть несколько простых правил.

Если F(x) - периодическая функция с периодом T, и для нее определена производная, то эта производная f(x) = F?(x) - тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла наклона касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.

Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C - нет.

Если F(x) - периодическая функция с периодом T, то G(x) = a*F(kx + b), где a, b, и k - константы и k не равно нулю - тоже периодическая функция, и ее период равен T/k. Например sin(2x) - периодическая функция, и ее период равен?. Наглядно это можно представить так: умножая x на какое-нибудь число, вы как бы сжимаете график функции по горизонтали именно в столько раз

Если F1(x) и F2(x) - периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 - рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй - 15, то период их суммы будет равен НОК (12, 15) = 60.

Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.

Однако если соотношение периодов иррационально, то суммарная функция не будет периодической вовсе. Например, пусть F1(x) = x mod 2 (остаток от деления x на 2), а F2(x) = sin(x). T1 здесь будет равен 2, а T2 равен 2?. Соотношение периодов равняется? - иррациональному числу. Следовательно, функция sin(x) + x mod 2 не является периодической.

Многие математические функции имеют одну особенность, облегчающую их построение, - это периодичность , то есть повторяемость графика на координатной сетке через равные промежутки.

Инструкция

Самыми известными периодическими функциями математики являются синусоида и косинусоида. Эти функции имеют волнообразный характер и основной период, равный 2П. Также частным случаем периодической функции является f(x)=const. На позицию х подходит любое число, основного периода данная функция не имеет, так как представляет собой прямую.

Вообще функция является периодической, если существует такое целое число N, которое отлично от нуля и удовлетворяет правилу f(x)=f(x+N), таким образом обеспечивая повторяемость. Период функции - это и есть наименьшее число N, но не ноль. То есть, например, функция sin x равна функции sin (x+2ПN), где N=±1, ±2 и т.д.

Иногда при функции может стоять множитель (например sin 2x), который увеличит или сократит период функции. Для того чтобы найти период по графику , необходимо определить экстремумы функции - самую высокую и самую низкую точки графика функции. Так как синусоида и косинусоида имеют волнообразный характер, это достаточно легко сделать. От данных точек постройте перпендикулярные прямые до пересечения с осью Х.

Расстояние от верхнего экстремума до нижнего будет половиной периода функции. Удобнее всего вычислять период от пересечения графика с осью Y и, соответственно, нулевой отметки по оси х. После этого необходимо умножить полученное значение на два и получить основной период функции.

Для простоты построения графиков синусоиды и косинусоиды необходимо отметить, что если при функции стоит целое число, то ее период удлинится (то есть 2П необходимо умножить на этот коэффициент) и график будет выглядеть более мягко, плавно- а если число дробное, наоборот, сократится и график станет более «острым», скачкообразным на вид.

Инструкция

Наименьший положительный период косинуса тоже равен 2?. Рассмотрите доказательство этого на примере функции y=cos(x). Если T будет произвольным период ом косинуса, то cos(a+T)=cos(a). В том случае если a=0, cos(T)=cos(0)=1. Ввиду этого, наименьшим положительным значением T, при котором cos(x)=1, есть 2?.

Учитывая тот факт, что 2? – период синуса и косинуса, это же будет и период ом котангенса, а также тангенса, однако не минимальным, поскольку, как , наименьший положительный период тангенса и котангенса равен?. Убедиться в этом сможете, рассмотрев следующий : точки, соответствующие (х) и (х+?) на тригонометрической окружности, имеют диаметрально противоположное расположение. Расстояние от точки (х) до точки (х+2?) соответствует половине окружности. По определению тангенса и котангенса tg(x+?)=tgx, а ctg(x+?)=ctgx, а значит, наименьший положительный период котангенса и ?.

Обратите внимание

Не путайте функции y=cos(x) и y=sin(x) - имея одинаковый период, эти функции изображаются по-разному.

Полезный совет

Для большей наглядности изобразите тригонометрическую функцию, у которой рассчитывается наименьший положительный период.

Источники:

  • Справочник по математике, школьная математика, высшая математика

Тригонометрические функции периодичны , то есть повторяются через определенный период. Благодаря этому достаточно исследовать функцию на этом промежутке и распространить найденные свойства на все остальные периоды.

Инструкция

Чтобы найти период тригонометрической функции, возведенной в степень, оцените четность степени. Для уменьшите стандартный период в два раза. Например, если вам дана функция у=3 cos^2х, то стандартный период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите , функции tg, ctg в любой степени периодичны П.

Как исследовать функцию и построить её график?

Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах…. Нескорый путь начался элементарными сведениями о функциях и графиках , и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом – статьёй о полном исследовании функции . Долгожданное задание формулируется следующим образом:

Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график

Или короче: исследовать функцию и построить график.

Зачем исследовать? В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.п. Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование.

Основные этапы решения сведены в справочном материале Схема исследования функции , это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты. Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении. Роботы прослезились =) Руководство свёрстано в виде pdf-файла и заняло заслуженное место на странице Математические формулы и таблицы .

Исследование функции я привык разбивать на 5-6 пунктов:

6) Дополнительные точки и график по результатам исследования.

На счёт заключительного действия, думаю, всем всё понятно – будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. ПРАВИЛЬНЫЙ И АККУРАТНЫЙ ЧЕРТЁЖ – это основной результат решения! Он с большой вероятностью «прикроет» аналитические оплошности, в то время как некорректный и/или небрежный график доставит проблемы даже при идеально проведённом исследовании.

Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из 2-3 этапов и формулируется примерно так: «исследовать функцию с помощью производной и построить график» либо «исследовать функцию с помощью 1-й и 2-й производной, построить график».

Естественно – если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение. Не сложнее, чем заменить вилку бензопилой ложкой.

Проверим функцию на чётность/нечётность:

После чего следует шаблонная отписка:
, значит, данная функция не является чётной или нечётной.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.

Нет и наклонных асимптот.

Примечание : напоминаю, что более высокого порядка роста , чем , поэтому итоговый предел равен именно «плюс бесконечности».

Выясним, как ведёт себя функция на бесконечности:

Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево – бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях .

Таким образом, функция не ограничена сверху и не ограничена снизу . Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции : – тоже любое действительное число.

ПОЛЕЗНЫЙ ТЕХНИЧЕСКИЙ ПРИЁМ

Каждый этап задания приносит новую информацию о графике функции , поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано , но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы .

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:


Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов .

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:


Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :


График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Для самостоятельного решения:

Пример 2

Исследовать функцию и построить график.

Тут всё быстрее и веселее, примерный образец чистового оформления в конце урока.

Немало секретов раскрывает исследование дробно-рациональных функций:

Пример 3

Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график.

Решение : первый этап исследования не отличается чем-то примечательным, за исключением дырки в области определения:

1) Функция определена и непрерывна на всей числовой прямой кроме точки , область определения : .


, значит, данная функция не является четной или нечетной.

Очевидно, что функция непериодическая.

График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости – это, пожалуй, самый важный вывод 1-го пункта.

2) Асимптоты, поведение функции на бесконечности.

а) С помощью односторонних пределов исследуем поведение функции вблизи подозрительной точки, где явно должна быть вертикальная асимптота:

Действительно, функции терпит бесконечный разрыв в точке ,
а прямая (ось ) является вертикальной асимптотой графика .

б) Проверим, существуют ли наклонные асимптоты:

Да, прямая является наклонной асимптотой графика , если .

Пределы анализировать смысла не имеет, поскольку и так понятно, что функция в обнимку со своей наклонной асимптотой не ограничена сверху и не ограничена снизу .

Второй пункт исследования принёс много важной информации о функции. Выполним черновой набросок:

Вывод №1 касается интервалов знакопостоянства. На «минус бесконечности» график функции однозначно расположен ниже оси абсцисс, а на «плюс бесконечности» – выше данной оси. Кроме того, односторонние пределы сообщили нам, что и слева и справа от точки функция тоже больше нуля. Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть.

Вывод №2 состоит в том, что функция возрастает на и слева от точки (идёт «снизу вверх»). Справа же от данной точки – функция убывает (идёт «сверху вниз»). У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы.

Вывод №3 даёт достоверную информацию о вогнутости графика в окрестности точки . О выпуклости/вогнутости на бесконечностях мы пока ничего сказать не можем, поскольку линия может прижиматься к своей асимптоте как сверху, так и снизу. Вообще говоря, есть аналитический способ выяснить это прямо сейчас, но форма графика «даром» прояснится на более поздних этапах.

Зачем столько слов? Чтобы контролировать последующие пункты исследования и не допустить ошибок! Дальнейшие выкладки не должны противоречить сделанным выводам.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.

График функции не пересекает ось .

Методом интервалов определим знаки :

, если ;
, если .

Результаты пункта полностью соответствуют Выводу №1. После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования:

Собственно, это уже проделывалось при нахождении асимптот.

– критическая точка.

Определим знаки :

возрастает на и убывает на

В точке функция достигает минимума: .

Разночтений с Выводом №2 также не обнаружилось, и, вероятнее всего, мы на правильном пути.

Значит, график функции является вогнутым на всей области определения.

Отлично – и чертить ничего не надо.

Точки перегиба отсутствуют.

Вогнутость согласуется с Выводом №3, более того, указывает, что на бесконечности (и там и там) график функции расположен выше своей наклонной асимптоты.

6) Добросовестно приколотим задание дополнительными точками. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки.

И картинка, которую, наверное, многие давно представили:


В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Вот «не сходится» аналитика – и всё тут. В этом случае рекомендую аварийный приём: находим как можно больше точек, принадлежащих графику (сколько хватит терпения), и отмечаем их на координатной плоскости. Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе (понятно, для этого нужны навыки).

Пример 4

Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции – график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку.

Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика. Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно. Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:

Пример 5

Провести полное исследование функции и построить её график.

Решение : понеслась нелёгкая:

1) Функция определена и непрерывна на всей числовой прямой: .

Значит, данная функция является нечетной, её график симметричен относительно начала координат.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют

Для функции, содержащей экспоненту, типично раздельное исследование «плюс» и «минус бесконечности», однако нашу жизнь облегчает как раз симметрия графика – либо и слева и справа есть асимптота, либо её нет. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя :

Прямая (ось ) является горизонтальной асимптотой графика при .

Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: предел вполне легален и проясняет поведение функции на бесконечности, а горизонтальная асимптота обнаружилась «как бы заодно».

Из непрерывности на и существования горизонтальной асимптоты следует тот факт, что функция ограничена сверху и ограничена снизу .

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства.

Здесь тоже сокращаем решение:
График проходит через начало координат.

Других точек пересечения с координатными осями нет. Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: , а значит, знак функции зависит только от «икса»:
, если ;
, если .

4) Возрастание, убывание, экстремумы функции.


– критические точки.

Точки симметричны относительно нуля, как оно и должно быть.

Определим знаки производной:


Функция возрастает на интервале и убывает на интервалах

В точке функция достигает максимума: .

В силу свойства (нечётности функции) минимум можно не вычислять:

Поскольку функция убывает на интервале , то, очевидно, на «минус бесконечности» график расположен под своей асимптотой. На интервале функция тоже убывает, но здесь всё наоборот – после перехода через точку максимума линия приближается к оси уже сверху.

Из вышесказанного также следует, что график функции является выпуклым на «минус бесконечности» и вогнутым на «плюс бесконечности».

После этого пункта исследования прорисовалась и область значений функции:

Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания.

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.

Симметрия точек сохраняется, и, скорее всего, мы не ошибаемся.

Определим знаки :


График функции является выпуклым на и вогнутым на .

Выпуклость/вогнутость на крайних интервалах подтвердилась.

Во всех критических точках существуют перегибы графика. Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции:

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

Ход урока

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

Вопросы теории.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+180º)
y=ctg(x) = ctg(x+180º)

tg(x+π n)=tgx, n € Z
ctg(x+π n)=ctgx, n € Z

sin(x+2π n)=sinx, n € Z
cos(x+2π n)=cosx, n € Z

5) Как построить график периодической функции?

Устные упражнения.

1) Доказать следующие соотношения

a) sin(740º ) = sin(20º )
b) cos(54º ) = cos(-1026º)
c) sin(-1000º) = sin(80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

4. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90º .

a) tg375º
b) ctg530º
c) sin1268º
d) cos(-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

Ответ : Т=2; Т=2; Т=4; Т=8.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

При этом способе обходятся трудности, связанные с доказательством того, что тот или иной период является наименьшим, а также отпадает необходимость касаться вопросов об арифметических действиях над периодическими функциями и о периодичности сложной функции. Рассуждение опирается лишь на определение периодической функции и на такой факт: если Т – период функции, то и nT(n?0) – ее период.

Задача 1. Найдите наименьший положительный период функции f(x)=1+3{x+q>5}

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

1+3{x+T+0,25}=1+3{x+0,25}
{x+T+0,25}={x+0.25}

Положим x=-0,25 получим

{T}=0 <=> T=n, n € Z

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1 . Проверим, не будет ли оно и на самом деле периодом 1 .

f(x+1) =3{x+1+0,25}+1

Так как {T+1}={T} при любом Т, то f(x+1)=3{(x+0.25)+1}+1=3{x+0,25}+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

f(x)=sin(1,5x)+5cos(0,75x)

Допустим Т-период функции, тогда для любого х справедливо соотношение

sin1,5(x+T)+5cos0,75(x+T)=sin(1,5x)+5cos(0,75x)

Если х=0, то

sin(1,5T)+5cos(0,75T)=sin0+5cos0

sin(1,5T)+5cos(0,75T)=5

Если х=-Т, то

sin0+5cos0=sin(-1,5Т)+5cos0,75(-Т)

5= – sin(1,5Т)+5cos(0,75Т)

sin(1,5Т)+5cos(0,75Т)=5

– sin(1,5Т)+5cos(0,75Т)=5

Сложив, получим:

10cos(0,75Т)=10

2π n, n € Z

Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число

f(x+)=sin(1,5x+4π )+5cos(0,75x+2π )= sin(1,5x)+5cos(0,75x)=f(x)

Значит – основной период функции f.

Задача 4. Проверим является ли периодической функция f(x)=sin(x)

Пусть Т – период функции f. Тогда для любого х

sin|x+Т|=sin|x|

Если х=0, то sin|Т|=sin0, sin|Т|=0 Т=π n, n € Z.

Предположим. Что при некотором n число π n является периодом

рассматриваемой функции π n>0. Тогда sin|π n+x|=sin|x|

Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.

Задача 5. Проверить, является ли периодической функция

f(x)=

Пусть Т – период f, тогда

, отсюда sinT=0, Т=π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2π n будет периодом

Так как числители равны, то равны и их знаменатели, поэтому

Значит, функция f не периодическая.

Работа в группах.

Задания для группы 1.

Задания для группы 2.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

f(x)=cos(2x)+2sin(2x)

Задания для группы 3.

По окончании работы группы презентуют свои решения.

VI. Подведение итогов урока.

Рефлексия.

Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.

VII. Домашнее задание

1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)

b). f(x)=x 2 -2x+4

c). f(x)=2tg(3x+5)

2). Функция y=f(x) имеет период Т=2 и f(x)=x 2 +2x при х € [-2; 0]. Найдите значение выражения -2f(-3)-4f(3,5)

Литература/

  1. Мордкович А.Г. Алгебра и начала анализа с углубленным изучением.
  2. Математика. Подготовка к ЕГЭ. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю.
  3. Шереметьева Т.Г. , Тарасова Е.А. Алгебра и начала анализа для 10-11 классов.






2024 © psynadin.ru.