Какое строение молекулы днк. Изучение ДНК: строение, структура ДНК, функции


План рождения человека готов тогда, когда половые клетки матери и отца сливаются в одно целое. Такое образование называется зиготой или оплодотворённой яйцеклеткой. Сам же план развития организма заключён в молекуле ДНК , находящейся в ядре этой единственной клетки. Именно в ней закодирован цвет волос, рост, форма носа и всё остальное, что делает личность индивидуальной.

Конечно, судьба человека зависит не только от молекулы, но и от многих других факторов. Но гены, заложенные при рождении, тоже во многом влияют на судьбоносный путь. А представляют они собой последовательность нуклеотидов.

При каждой делении клетки ДНК удваивается. Поэтому каждая клетка несёт в себе информацию о строении всего организма. Это как если бы при строительстве кирпичного здания на каждом кирпиче имелся архитектурный план всего сооружения. Посмотрел всего лишь на один кирпич и уже знаешь, частью какой строительной конструкции он является.

Подлинная структура молекулы ДНК была впервые продемонстрирована британским биологом Джоном Гёрдоном в 1962 году. Он брал ядро клетки из кишечника лягушки и с помощью микрохирургической техники пересаживал его в лягушачью икринку. При этом в этой икринке собственное ядро было предварительно убито ультрафиолетовым облучением.

Из гибридной икринки вырастала нормальная лягушка. При этом она была абсолютно идентична той, чьё клеточное ядро было взято. Так было положено начало эре клонирования. А первым успешным результатом клонирования среди млекопитающих стала овечка Долли. Она прожила 6 лет, а затем скончалась.

Впрочем, сама природа тоже создаёт двойников. Случается это тогда, когда после первого деления зиготы две новые клетки не остаются вместе, а расходятся в стороны, и из каждой получается свой организм. Так рождаются однояйцевые близнецы. Их молекулы ДНК абсолютно одинаковые, поэтому близнецы так похожи.

Своим внешним видом ДНК напоминает верёвочную лестницу, завитую в правую спираль. А состоит она из полимерных цепочек, каждая из которых формируется из звеньев 4-х типов: адениновое (А), гуаниновое (Г), тиминовое (Т) и цитозиновое (Ц).

Именно в их последовательности и заключена генетическая программа любого живого организма. На рисунке ниже, для примера, приведён нуклеотид Т. У него верхнее кольцо называется азотистым основанием, пятичленное кольцо внизу представляет собой сахар, а слева находится фосфатная группа.

На рисунке изображён тиминовый нуклеотид, входящий в состав ДНК. Остальные 3 нуклеотида имеют сходное строение, а различаются по азотистому основанию. Правое верхнее кольцо - азотистое основание. Нижнее пятичленное кольцо - сахар. Левая группа РО - фосфат

Размеры молекулы ДНК

Диаметр двойной спирали составляет 2 нм (нм - нанометр, равен 10 -9 метра). Расстояние между соседними парами оснований вдоль спирали составляет 0,34 нм. Полный оборот двойная спираль делает через 10 пар. А вот длина зависит от того организма, которому принадлежит молекула. У простейших вирусов имеется всего лишь несколько тысяч звеньев. У бактерий их несколько миллионов. А у высших организмов их миллиарды.

Если вытянуть в одну линию все ДНК, заключённые в одной клетке человека, то получится нить длиной примерно 2 м. Отсюда видно, что длина нити в миллиарды раз больше её толщины. Чтобы лучше представить себе размеры молекулы ДНК, можно вообразить, что её толщина равна 4 см. Такой нитью, взятой из одной человеческой клетки, можно опоясать земной шар по экватору. В таком масштабе человек будет соответствовать размерам Земли, а ядро клетки вырастит до размеров стадиона.

Верна ли модель Уотсона и Крика?

Рассматривая структуру молекулы ДНК, возникает вопрос, как она, имея такую огромную длину, располагается в ядре. Она должна лежать так, чтобы быть доступной по всей своей длине для РНК-полимеразы, которая считывает нужные гены.

А как осуществляется репликация? Ведь после удвоения две комплементарные цепи должны разойтись. Это довольно сложно, так как цепи первоначально закручены в спираль.

Такие вопросы изначально породили сомнения в верности модели Уотсона и Крика . А данная модель была слишком конкретна и просто дразнила специалистов своей незыблемостью. Поэтому все бросились искать изъяны и противоречия.

Одни специалисты предполагали, что если злополучная молекула состоит из 2-х полимерных цепочек, связанных слабыми нековалентными связями, то они должны расходиться при нагревании раствора, что можно легко проверить экспериментально.

Вторые специалисты заинтересовались азотистыми основаниями, которые образуют друг с другом водородные связи. Это можно проверить, измеряя спектры молекулы в инфракрасной области.

Третьи специалисты думали, что если внутри двойной спирали и впрямь запрятаны азотистые основания, то можно выяснить, действуют ли на молекулу те вещества, которые способны реагировать только с этими запрятанными группами.

Было поставлено множество опытов и к концу 50-х годов XX столетия стало ясно, что предложенная Уотсоном и Криком модель выдерживает все испытания. Попытки её опровержения потерпели неудачу .

Хромосомы. Указать, что хромосомы состоят из ДНК, которая окружена белками двух типов: гистоновыми (основными) и негистоновыми (кислыми) . Отметить, что хромосомы могут находиться в двух структурно-функциональных состояниях: спирализованном и деспирализованном. Знать, какое из этих двух состояний хромосомы является рабочим и что это означает. Указать, в какой период жизни клетки хромосомы спирализованы и хорошо видны под микроскопом. Знать строение хромосомы, виды хромосом, которые различаются по месту расположения первичной перетяжки.

Организмы большинства живых существ имеют клеточное строение. В процессе эволюции органического мира в качестве элементарной системы, в которой возможно проявление всех закономерностей живого, была отобрана клетка. Организмы, имеющие клеточное строение, делятся на доядерные, не имеющие типичного ядра (или прокариоты) , в обладающие типичным ядром (или эукариоты) . Указать, какие организмы относятся к прокариотам, какие к эукариотам.

Для понимания организации биологической системы необходимо знать молекулярный состав клетки. По содержанию элементы, входящие в состав клетки, делятся на три группы: макроэлементы, микроэлементы и ультрамикроэлементы. Привести примеры элементов, входящих в состав каждой группы, охарактеризовать роль основных неорганических составляющих в жизнедеятельности клетки. Химические компоненты живого делятся на неорганические (вода, минеральные соли) и органические (белки, углеводы, липиды, нуклеиновые кислоты) . За небольшим исключением (кость и эмаль зубов) вода является преобладающим компонентом клеток. Знать свойства воды, в каких формах вода находится в клетке, охарактеризовать биологическое значение воды. По содержанию из органических веществ в клетке первое место занимают белки. Охарактеризовать состав белков, пространственную организацию белков (первичная, вторичная, третичная, четвертичная структуры) , роль белков в организме. Углеводы делятся на 3 класса: моносахариды, дисахариды и полисахариды. Знать химический состав и критерии классификации углеводов. Привести примеры важнейших представителей класса и охарактеризовать их роль в жизнедеятельности клетки. Наибольшим химическим разнообразием характеризуются липиды. Термин "липиды" объединяет жиры и жироподобные вещества - липоиды. Жиры - это сложные эфиры жирных кислот и какого-либо спирта. Знать химический состав липидов и липоидов. Подчеркнуть основные функции: трофическую, энергетическую, а также другие функции, которые необходимо охарактеризовать. Энергия, освобождающаяся при распаде органических веществ, используется для работы в клетках не сразу, а сначала запасается в форме высокоэнергетического промежуточного соединения - аденозинтрифосфата (АТФ) . Знать химический состав АТФ. Раскрыть, что представляет собой соединения АМФ и АДФ. Раскрыть понятие "макроэргическая связь". Указать, при каких процессах образуется АДФ и АМФ, и каким образом происходит образование АТФ, какова энергетическая ценность этих процессов. Привести примеры физиологических процессов, требующих больших затрат энергии.

ДНК является универсальным источником и хранителем наследственной информации, которая записана с помощью специальной последовательности нуклеотидов, она определяет свойства всех живых организмов.

Средняя молекулярная масса нуклеотида принимается равной 345, а количество нуклеотидных остатков может достигать нескольких сот, тысяч и даже миллионов. ДНК в основной своей массе находится в ядрах клеток. Немного содержится в хлоропластах и митохондриях. Однако ДНК ядра клетки - это не одна молекула. Она состоит из множества молекул, которые распределены по разным хромосомам, их количество меняется в зависимости от организма. Это и есть особенности строения ДНК.

История открытия ДНК

Строение и функции ДНК были открыты Джеймсом Уотсоном и Френсисом Криком, им даже была вручена Нобелевская премия в 1962 году.

Но впервые обнаружил нуклеиновые кислоты швейцарский ученый Фридрих Иоганн Мишер, работавший в Германии. В 1869 году он изучал животные клетки - лейкоциты. Для их получения использовал повязки с гноем, достававшиеся ему из больниц. Из гноя Мишер вымывал лейкоциты, а из них выделял белок. В ходе этих исследований ученому удалось установить, что в лейкоцитах кроме белков имеется еще что-то, какое-то неизвестное на тот момент вещество. Оно представляло собой нитевидный или хлопьевидный осадок, который выделялся, если создать кислую среду. Осадок сразу растворялся при добавлении щелочи.

Ученый с помощью микроскопа обнаружил, что при отмывании лейкоцитов с помощью соляной кислоты от клеток остаются ядра. Тогда он сделал заключение, что в ядре есть неизвестное вещество, названное им нуклеином (слово nucleus в переводе означает ядро).

Проведя химический анализ, Мишер выяснил, что новое вещество в своем составе имеет углерод, водород, кислород и фосфор. В то время фосфорорганических соединений было известно немного, поэтому Фридрих решил, что обнаружил новый класс соединений, находящихся в ядре клетки.

Таким образом, в XIX веке было открыто существование нуклеиновых кислот. Однако в то время никто не мог даже подумать о том, какая важная роль им принадлежит.

Вещество наследственности

Строение ДНК продолжали исследовать, и в 1944 году группа бактериологов под руководством Освальда Эвери получила доказательства того, что эта молекула заслуживает серьезного внимания. Ученый на протяжении многих лет занимался изучением пневмококков, организмов, которые вызывали пневмонию или заболевание легких. Эвери проводил опыты, смешивая пневмококки, вызывающие заболевание, с теми, которые безопасны для живых организмов. Сначала болезнетворные клетки убивали, а после добавляли к ним те, которые заболеваний не вызывают.

Результаты исследований поразили всех. Были такие живые клетки, которые после взаимодействия с мертвыми научались вызывать болезнь. Ученый выяснил природу вещества, которое участвует в процессе передачи информации живым клеткам от мертвых. Молекула ДНК и оказалась этим веществом.

Строение

Итак, необходимо разобраться с тем, какое строение имеет молекула ДНК. Открытие ее структуры стало значимым событием, это привело к образованию молекулярной биологии - новой отрасли биохимии. ДНК в больших количествах находится в ядрах клеток, однако размеры и количество молекул зависят от вида организма. Установлено, что ядра клеток млекопитающих содержат много этих клеток, они распределены по хромосомам, их насчитывается 46.

Изучая строение ДНК, в 1924 году Фельген впервые установил ее локализацию. Доказательства, полученные в ходе экспериментов, показали, что ДНК находится в митохондриях (1-2%). В других местах эти молекулы могут находиться при вирусной инфекции, в базальных тельцах, а также в яйцеклетках некоторых животных. Известно, что чем сложнее организм, тем масса ДНК больше. Количество молекул, находящихся в клетке, зависит от функции и составляет обычно 1-10%. Меньше всего их находится в миоцитах (0,2%), больше - в половых клетках (60%).

Строение ДНК показало, что в хромосомах высших организмов они связаны с простыми белками - альбуминами, гистонами и прочими, которые все вместе образуют ДНП (дезоксирибонуклеопротеид). Обычно большая молекула нестойкая, и для того чтобы она оставалась целой и неизменной в ходе эволюции, создана так называемая репарирующая система, которая состоит из ферментов - лигаз и нуклеаз, отвечающих за «ремонт» молекулы.

Химическое строение ДНК

ДНК является полимером, полинуклеотидом, состоящим из огромного числа (до десятков тысяч миллионов) мононуклеотидов. Строение ДНК имеет следующий вид: мононуклеотиды содержат азотистые основания - цитозин (Ц) и тимин (Т) - из производных пиримидинов, аденин (А) и гуанин (Г) - из производных пурина. Кроме азотистых оснований, в составе молекулы человека и животных имеется 5-метилцитозин — минорное пиримидиновое основание. С фосфорной кислотой и дезоксирибозой связываются азотистые основания. Схема строения ДНК продемонстрирована ниже.

Правила Чаргаффа

Строение и биологическая роль ДНК изучались Э. Чаргаффом в 1949 году. В ходе исследований он выявил закономерности, которые наблюдаются в количественном распределении азотистых оснований:

  1. ∑Т + Ц = ∑А + Г (то есть число пиримидиновых оснований равно числу пуриновых).
  2. Всегда количество остатков аденина равно количеству остатков тимина, а количество гуанина равно цитозину.
  3. Коэффициент специфичности имеет формулу: Г+Ц/А+Т. Например, у человека он равен 1,5, у быка - 1,3.
  4. Сумма "А + Ц" равна сумме "Г + Т", то есть аденина и цитозина имеется столько же, сколько гуанина и тимина.

Модель строения ДНК

Ее создали Уотсон и Крик. Остатки фосфатов и дезоксирибоз располагаются по хребту двух закрученных спиралеобразным образом полинуклеотидных цепей. Определено, что плоскостные структуры пиримидиновых и пуриновых оснований располагаются перпендикулярно оси цепи и образуют как бы ступени лестницы в виде спирали. Установлено также, что А всегда соединяется с Т при помощи двух водородных связей, а Г прикреплено к Ц уже тремя такими же связями. Этому явлению дали название "принцип избирательности и комплементарности".

Уровни структурной организации

Изогнутая как спираль полинуклеотидная цепь - это первичная структура, которая имеет определенный качественный и количественный набор мононуклеотидов, связанных 3’,5’-фосфодиэфирной связью. Таким образом, каждая из цепей имеет 3’-конец (дезоксирибоза) и 5’-конец (фосфатный). Участки, которые содержат в себе генетическую информацию, названы структурными генами.

Двухспиральная молекула - это вторичная структура. Причем ее полинуклеотидные цепи антипараллельны и связываются водородными связями между комплементарными основаниями цепей. Установлено, что в каждом витке этой спирали содержится 10 нуклеотидных остатков, длина ее равняется 3,4 нм. Эту структуру поддерживают также Ван-дер-Ваальсовы силы взаимодействия, которые наблюдаются между основаниями одной цепи, включающие отталкивающие и притягивающие компоненты. Эти силы объясняются взаимодействием электронов в соседних атомах. Электростатическое взаимодействие также стабилизирует вторичную структуру. Оно возникает между заряженными положительно молекулами гистонов и заряженной отрицательно нитью ДНК.

Третичная структура - это намотка цепей ДНК на гистоны или суперспирализация. Описано пять видов гистонов: Н1, Н2А, Н2В, Н3, Н4.

Укладка нуклеосом в хроматин - это четвертичная структура, поэтому молекула ДНК, имеющая длину несколько сантиметров, может складываться до 5 нм.

Функции ДНК

Основными функциями ДНК являются:

  1. Хранение наследственной информации. Последовательность аминокислот, находящихся в молекуле белка, определяется порядком, в котором расположены нуклеотидные остатки в молекуле ДНК. Также в ней зашифрована вся информация о свойствах и признаках организма.
  2. ДНК способна передавать наследственную информацию следующему поколению. Это возможно из-за способности к репликации - самоудвоению. ДНК способна распадаться на две комплементарные цепочки, и на каждой из них (в соответствии с принципом комплементарности) восстанавливается исходная последовательность нуклеотидов.
  3. При помощи ДНК происходит биосинтез белков, ферментов и гормонов.

Заключение

Строение ДНК позволяет ей являться хранителем генетической информации, а также передавать ее следующим поколениям. Какие есть особенности у этой молекулы?

  1. Стабильность. Это возможно благодаря гликозидным, водородным и фосфодиэфирным связям, а также механизму репарации индуцированных и спонтанных повреждений.
  2. Возможность репликации. Этот механизм позволяет в соматических клетках сохранять диплоидное число хромосом.
  3. Существование генетического кода. При помощи процессов трансляции и транскрипции последовательность оснований, находящихся в ДНК, преобразуется в последовательность аминокислот, находящихся в полипептидной цепи.
  4. Способность к генетической рекомбинации. При этом образуются новые сочетания генов, которые сцеплены между собой.

Таким образом, строение и функции ДНК позволяют ей играть неоценимую роль в организмах живых существ. Известно, что длина 46-ти молекул ДНК, находящихся в каждой клетке человека, равна почти 2 м, а число нуклеотидных пар составляет 3,2 млрд.

Молекула ДНК - это полинуклеотид, мономерными единицами которого служат четыре дезоксирибонуклеотида (дАМФ, дГМФ, дЦМФ и дТМФ). Соотношение и нуклеотидов в ДНК разных организмов различны. Кроме главных азотистых оснований в ДНК содержатся и другие дезоксирибонуклеотиды с минорными основаниями: 5-метилцитозин, 5-оксиметилцитозин, 6-метиламинопурин.

После того как появилась возможность использования метода рентгеновской кристаллографии для изучения биологических макромолекул и получения совершенных рентгенограмм, удалось выяснить молекулярную структуру ДНК. Указанный метод основан на том, что пучок параллельных рентгеновских лучей, падающих на кристаллическое скопление атомов, образует дифракционную картину, которая в основном зависит от атомной массы этих атомов, их расположения в пространстве. В 40-х годах прошлого века была выдвинута теория о трехмерной структуре молекулы ДНК. У. Астбюри доказал, что представляет собой стопку из наложенных один на другой плоских нуклеотидов.

Первичная структура молекулы ДНК

Под первичной структурой нуклеиновых кислот подразумевают последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК. Нуклеотиды связываются между собой при помощи фосфодиэфирных связей, которые образуются между ОН-группой в положении 5 дезоксирибозы одного нуклеотида и ОН-группой в положении 3 пентозы другого.

Биологические свойства нуклеиновых кислот определяются качественным соотношением и последовательностью нуклеотидов вдоль полинуклеотидной цепи.

Нуклеотидный состав ДНК у организмов разных специфичен и определяется отношением (Г + Ц)/(А + Т). С помощью коэффициента специфичности была определена степень гетерогенности нуклеотидного состава ДНК у организмов различного происхождения. Так, у высших растений и животных отношение (Г+Ц)/(А+Т) колеблется незначительно и имеет значение больше 1. Для микроорганизмов коэффициент специфичности изменяется в широких пределах — от 0,35 до 2,70. Вместе с тем данного биологического вида содержат ДНК одного и того же нуклеотидного состава, т. е. можно сказать, что по содержанию ГЦ-пар оснований ДНК одного вида идентичны.

Определение гетерогенности нуклеотидного состава ДНК по коэффициенту специфичности еще не дает информации о ее биологических свойствах. Последнее обусловлено различной последовательностью отдельных нуклеотидных участков в полинуклеотидной цепи. Это значит, что генетическая информация в молекулах ДНК закодирована в специфической последовательности ее мономерных единиц.

Молекула ДНК содержит нуклеотидные последовательности, предназначенные для инициации и терминации процессов синтеза синтеза РНК (транскрипция), (трансляция). Имеются нуклеотидные последовательности, которые служат для связывания специфических активирующих и ингибирующих регуляторных молекул, а также нуклеотидные последовательности, не несущие какой-либо генетической информации. Существуют также модифицированные области, которые защищают молекулу от действия нуклеаз.

Проблема нуклеотидной последовательности ДНК до настоящего времени полностью не разрешена. Определение нуклеотидной последовательности нуклеиновых кислот является трудоемкой процедурой, предусматривающей применение метода специфического нуклеазного расщепления молекул на отдельные фрагменты. На сегодняшний день полная нуклеотидная последовательность азотистых оснований установлена для большинства тРНК разного происхождения.

Молекула ДНК: вторичная структура

Уотсон и Крик спроектировали модель двойной спирали Согласно данной модели две полинуклеотидных цепи обвивают друг друга, при этом образуется своеобразная спираль.

Азотистые основания в них расположены внутри структуры, а фосфодиэфирный остов — снаружи.

Молекула ДНК: третичная структура

Линейная ДНК в клетке имеет форму вытянутой молекулы, она упакована в компактную структуру и занимает всего 1/5 объема клетки. Например, длина ДНК хромосомы человека достигает 8 см, а упакована так, что умещается в хромосоме с длиной 5 нм. Подобная укладка возможна благодаря наличию спирализованных структур ДНК. Из этого следует, что двухцепочечная спираль ДНК в пространстве может подвергаться дальнейшей укладке в определенную третичную структуру — суперспираль. Суперспиральная конформация ДНК характерна для хромосом высших организмов. Подобная третичная структура стабилизируется за счет с остатками аминокислот, входящих в состав тех белков, которые образуют нуклеопротеидный комплекс (хроматин). Следовательно, ДНК ассоциирована с белками главным образом основного характера — гистонами, а также кислыми белками и фосфопротеидами.

Все мы знаем, что облик человека, некоторые привычки и, даже, заболевания передаются по наследству. Вся эта информация о живом существе закодирована в генах. Так как же эти пресловутые гены выглядят, как они функционируют и где находятся?

Итак, носителем всех генов любого человека или животного является ДНК. Данное соединение было открыто в 1869 году Иоганном Фридрихом Мишером.Химически ДНК – это дезоксирибонуклеиновая кислота. Что же это означает? Каким образом эта кислота несет в себе генетический код всего живого на нашей планете?

Начнем с того, что рассмотрим, где располагается ДНК. В клетке человека имеется множество органоидов, которые выполняют различные функции. ДНК располагается в ядре. Ядро – это маленькая органелла, которая окружена специальной мембраной, и в которой хранится весь генетический материал – ДНК.

Каково строение молекулы ДНК?

Прежде всего, рассмотрим, что представляет собой ДНК. ДНК – это очень длинная молекула, состоящая из структурных элементов – нуклеотидов. Имеется 4 вида нуклеотидов – это аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Цепочка нуклеотидов схематически выглядит следующим образом: ГГААТЦТААГ.… Вот такая последовательность нуклеотидов и есть цепочка ДНК.

Впервые структура ДНК была расшифрована в 1953 году Джеймсом Уотсоном и Френсисом Криком.

В одной молекуле ДНК имеется две цепочки нуклеотидов, которые спирально закручены вокруг друг друга. Как же эти нуклеотидные цепочки держатся рядом и закручиваются в спираль? Данный феномен обусловлен свойством комплементарности. Комплементарность означает, что друг напротив друга в двух цепочках могут находиться только определенные нуклеотиды (комплементарные). Так, напротив аденина всегда стоит тимин, а напротив гуанина всегда только цитозин. Таким образом, гуанин комплементарен с цитозином, а аденин – с тимином.Такие пары нуклеотидов, стоящие напротив друг друга в разных цепочках также называются комплементарными.

Схематически можно изобразить следующим образом:

Г - Ц
Т - А
Т - А
Ц - Г

Эти комплементарные пары А - Т и Г - Ц образуют химическую связь между нуклеотидами пары, причем связьмежду Г и Ц более прочная чем между А и Т. Связь образуется строго между комплементарными основаниями, то есть образование связи между не комплементарными Г и А – невозможно.

«Упаковка» ДНК, как цепочка ДНК становится хромосомой?

Почему же эти нуклеотидные цепочки ДНК еще и закручиваются вокруг друг друга? Зачем это нужно? Дело в том, что количество нуклеотидов огромно и нужно очень много места, чтобы разместить такие длинные цепочки. По этой причине происходит спиральное закручивание двух нитей ДНК вокруг друга. Данное явление носит название спирализации. В результате спирализации цепочки ДНК укорачиваются в 5-6 раз.

Некоторые молекулы ДНК активно используются организмом, а другие используются редко. Такие редко используемые молекулы ДНК помимо спирализации подвергается еще более компактной «упаковке». Такая компактная упаковка называется суперспирализацией и укорачивает нить ДНК в 25-30 раз!

Как происходит упаковка спиралей ДНК?

Для суперспирализации используются гистоновые белки , которые имеют вид и структуру стержня или катушки для ниток. На эти «катушки» - гистоновые белки наматываются спирализованные нити ДНК. Таким образом, длинная нить становится очень компактно упакованной и занимает очень мало места.

При необходимости использовать ту или иную молекулу ДНК происходит процесс «раскручивания», то есть нить ДНК «сматывается» с «катушки» - гистонового белка (если была на нее накручена) и раскручивается из спирали в две параллельные цепи. А когда молекула ДНК находится в таком раскрученном состоянии, то с нее можно считать необходимую генетическую информацию. Причем считывание генетической информации происходит только с раскрученных нитей ДНК!

Совокупность суперспирализованных хромосом называется гетерохроматин , а хромосом, доступных для считывания информации – эухроматин .


Что такое гены, какова их связь с ДНК?

Теперь давайте рассмотрим, что же такое гены. Известно, что есть гены, определяющие группу крови, цвет глаз, волос, кожи и множество других свойств нашего организма. Ген – это строго определенный участок ДНК, состоящий из определенного количества нуклеотидов, расположенных в строго определенной комбинации. Расположение в строго определенном участке ДНК означает, что конкретному гену отведено его место, и поменять это место невозможно. Уместно провести такое сравнение: человек живет на определенной улице, в определенном доме и квартире, и самовольно человек не может переселиться в другой дом, квартиру или на другую улицу. Определенное количество нуклеотидов в гене означает, что каждый ген имеет конкретное число нуклеотидов и их не может стать больше или меньше. Например, ген, кодирующий выработку инсулина , состоит из 60 пар нуклеотидов; ген, кодирующий выработку гормона окситоцина – из 370 пар нуклеотидов.

Строгая последовательность нуклеотидов является уникальной для каждого гена и строго определенной. Например, последовательность ААТТААТА – это фрагмент гена, кодирующего выработку инсулина. Для того чтобы получить инсулин, используется именно такая последовательность, для получения, например, адреналина, используется другая комбинация нуклеотидов. Важно понимать, что только определенная комбинация нуклеотидов кодирует определенный «продукт» (адреналин, инсулин и т.д.). Такая вот уникальная комбинация определенного числа нуклеотидов, стоящая на «своем месте» - это и есть ген .

Помимо генов в цепи ДНК расположены, так называемые «некодирующие последовательности». Такие некодирующие последовательности нуклеотидов регулируют работу генов, помогают спирализации хромосом, отмечают точку начала и конца гена. Однако, на сегодняшний день, роль большинства некодирующих последовательностей остается невыясненной.

Что такое хромосома? Половые хромосомы

Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.

В чем заключаются различия хромосом?

Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).

Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.

Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс - икс) – это женщина, а если ХУ (икс - игрек) – перед нами мужчина.

Наследственные болезни и повреждения хромосом

Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.

Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.

Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом , но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.

На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации - какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.

Как прочитать информацию, закодированную в ДНК?

А как же можно прочитать информацию, содержащуюся в ДНК? Как использует ее собственный организм? Сама ДНК представляет собой некую матрицу, но не простую, а закодированную. Чтобы прочесть информацию с матрицы ДНК, она сначала переносится на специальный переносчик – РНК. РНК – это химически рибонуклеиновая кислота. Отличается от ДНК тем, что может проходить через мембрану ядра в клетку, а ДНК лишена такой способности (она может находиться только в ядре). Закодированная информация же используется в самой клетке. Итак, РНК – это переносчик кодированной информации из ядра в клетку.

Как происходит синтез РНК, как при помощи РНК синтезируется белок?

Нити ДНК, с которых нужно «считать» информацию, раскручиваются, к ним подходит специальный фермент – «строитель» и синтезирует параллельно нити ДНК комплементарную цепочку РНК. Молекула РНК также состоит из 4 видов нуклеотидов – аденина (А), урацила (У), гуанина (Г) и цитозина (Ц). При этом комплементарными являются следующие пары: аденин – урацил, гуанин – цитозин. Как видно, в отличие от ДНК, в РНК используется урацил вместо тимина. То есть фермент-«строитель» работает следующим образом: если в нити ДНК он видит А, то к нити РНК присоединяет У, если Г – то присоединяет Ц и т.д. Таким образом, с каждого активного гена при транскрипции формируется шаблон – копия РНК, способная проходить через мембрану ядра.

Как происходит синтез белка закодированного определенным геном?

Покинув ядро, РНК попадает в цитоплазму. Уже в цитоплазме РНК может быть, как матрица встроена в специальные ферментные системы (рибосомы), которые могут синтезировать, руководствуясь информацией РНК соответствующую последовательность аминокислот белка. Как известно, молекула белка состоит из аминокислот. Как же рибосоме удается узнать, какую именно аминокислоту надо присоединить к растущей белковой цепи? Делается это на основе триплетного кода. Триплетный код означает, что последовательность в три нуклеотида цепочки РНК (триплет, например, ГГУ) кодируют одну аминокислоту (в данном случае глицин). Каждую аминокислоту кодирует определенный триплет. И так, рибосома «прочитывает» триплет, определяет какую аминокислоту надо присоединить следующей по мере считывания информации в РНК. Когда цепочка аминокислот сформирована, она принимает определенную пространственную форму и становится белком, способным осуществлять возложенные на него ферментные, строительные, гормональные и другие функции.

Белок для любого живого организма является продуктом гена. Именно белками определяются все разнообразные свойства, качества и внешние проявления генов.







2024 © psynadin.ru.